Search results
Results From The WOW.Com Content Network
A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace , while the motion is represented as a path in (possibly higher-dimensional) configuration space .
Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
It is designed to assist the spatial planner with guidance in making land use decisions. A system which models decisions could be used to help identify the most effective decision path. An SDSS is sometimes referred to as a policy support system, and comprises a decision support system (DSS) and a geographic information system (GIS).
This page was last edited on 1 October 2011, at 19:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...
Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]
The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero." [2]
A reference model architecture is a canonical form, not a system design specification. The RCS reference model architecture combines real-time motion planning and control with high level task planning, problem solving, world modeling, recursive state estimation, tactile and visual image processing, and acoustic signature analysis.