When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Motion planning - Wikipedia

    en.wikipedia.org/wiki/Motion_planning

    A basic motion planning problem is to compute a continuous path that connects a start configuration S and a goal configuration G, while avoiding collision with known obstacles. The robot and obstacle geometry is described in a 2D or 3D workspace , while the motion is represented as a path in (possibly higher-dimensional) configuration space .

  3. Real-time path planning - Wikipedia

    en.wikipedia.org/wiki/Real-time_path_planning

    Real-Time Path Planning is a term used in robotics that consists of motion planning methods that can adapt to real time changes in the environment. This includes everything from primitive algorithms that stop a robot when it approaches an obstacle to more complex algorithms that continuously takes in information from the surroundings and creates a plan to avoid obstacles.

  4. Path-planning - Wikipedia

    en.wikipedia.org/?title=Path-planning&redirect=no

    This page was last edited on 1 October 2011, at 19:47 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may ...

  5. Control engineering - Wikipedia

    en.wikipedia.org/wiki/Control_engineering

    Control systems play a critical role in space flight.. Control engineering, also known as control systems engineering and, in some European countries, automation engineering, is an engineering discipline that deals with control systems, applying control theory to design equipment and systems with desired behaviors in control environments. [1]

  6. Control system - Wikipedia

    en.wikipedia.org/wiki/Control_system

    The definition of a closed loop control system according to the British Standards Institution is "a control system possessing monitoring feedback, the deviation signal formed as a result of this feedback being used to control the action of a final control element in such a way as to tend to reduce the deviation to zero." [2]

  7. Any-angle path planning - Wikipedia

    en.wikipedia.org/wiki/Any-angle_path_planning

    Any-angle path planning algorithms are pathfinding algorithms that search for a Euclidean shortest path between two points on a grid map while allowing the turns in the path to have any angle. The result is a path that cuts directly through open areas and has relatively few turns. [ 1 ]

  8. Feed forward (control) - Wikipedia

    en.wikipedia.org/wiki/Feed_forward_(control)

    A pure feed-forward system is different from a homeostatic control system, which has the function of keeping the body's internal environment 'steady' or in a 'prolonged steady state of readiness.' A homeostatic control system relies mainly on feedback (especially negative), in addition to the feedforward elements of the system.

  9. Automated planning and scheduling - Wikipedia

    en.wikipedia.org/wiki/Automated_planning_and...

    Further, in planning with rational or real time, the state space may be infinite, unlike in classical planning or planning with integer time. Temporal planning is closely related to scheduling problems when uncertainty is involved and can also be understood in terms of timed automata. The Simple Temporal Network with Uncertainty (STNU) is a ...