When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Product rule - Wikipedia

    en.wikipedia.org/wiki/Product_rule

    In this terminology, the product rule states that the derivative operator is a derivation on functions. In differential geometry , a tangent vector to a manifold M at a point p may be defined abstractly as an operator on real-valued functions which behaves like a directional derivative at p : that is, a linear functional v which is a derivation ...

  3. General Leibniz rule - Wikipedia

    en.wikipedia.org/wiki/General_Leibniz_rule

    This formula can be used to derive a formula that computes the symbol of the composition of differential operators. In fact, let P and Q be differential operators (with coefficients that are differentiable sufficiently many times) and R = P ∘ Q . {\displaystyle R=P\circ Q.}

  4. List of limits - Wikipedia

    en.wikipedia.org/wiki/List_of_limits

    If is expressed in radians: ⁡ = ⁡ ⁡ = ⁡ These limits both follow from the continuity of sin and cos. ⁡ =. [7] [8] Or, in general, ⁡ =, for a not equal to 0. ⁡ = ⁡ =, for b not equal to 0.

  5. Differentiation of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Differentiation_of...

    For example, the derivative of the sine function is written sin ′ (a) = cos(a), meaning that the rate of change of sin(x) at a particular angle x = a is given by the cosine of that angle. All derivatives of circular trigonometric functions can be found from those of sin( x ) and cos( x ) by means of the quotient rule applied to functions such ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  7. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The derivative of the function given by () = + ⁡ ⁡ + is ′ = + ⁡ (⁡) ⁡ () + = + ⁡ ⁡ (). Here the second term was computed using the chain rule and the third term using the product rule. The known derivatives of the elementary functions , , ⁡ (), ⁡ (), and ⁡ =, as well as the constant , were also used.

  8. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    These identities are useful whenever expressions involving trigonometric functions need to be simplified. An important application is the integration of non-trigonometric functions: a common technique involves first using the substitution rule with a trigonometric function, and then simplifying the resulting integral with a trigonometric identity.

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    Combining derivatives of different variables results in a notion of a partial differential operator. The linear operator which assigns to each function its derivative is an example of a differential operator on a function space. By means of the Fourier transform, pseudo-differential operators can be defined which allow for fractional calculus.