Search results
Results From The WOW.Com Content Network
The addition of a material separation agent, such as benzene to an ethanol/water mixture, changes the molecular interactions and eliminates the azeotrope. Added in the liquid phase, the new component can alter the activity coefficient of various compounds in different ways thus altering a mixture's relative volatility.
By heating the alcohol, the vapors fill in the space, increasing the pressure in the tube to the point of the cork popping out. Vapor pressure [a] or equilibrium vapor pressure is the pressure exerted by a vapor in thermodynamic equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system. The equilibrium ...
In the above equation, T F is the normal freezing point of the pure solvent (273 K for water, for example); a liq is the activity of the solvent in the solution (water activity for aqueous solution); ΔH fus T F is the enthalpy change of fusion of the pure solvent at T F, which is 333.6 J/g for water at 273 K; ΔC fus p is the difference ...
The degree of conversion to acetal is determined by the equilibrium constant of the reaction: GG-Reaktion zu Acetalen. The most common technique to complete the acetal formation is to remove the reaction water by azeotropic distillation with organic solvents that are not miscible with water, such as benzene or toluene. The tendency of propenal ...
This Wikipedia page provides a comprehensive list of boiling and freezing points for various solvents.
The starting point for the collection of the substituent constants is a chemical equilibrium for which the substituent constant is arbitrarily set to 0 and the reaction constant is set to 1: the deprotonation of benzoic acid or benzene carboxylic acid (R and R' both H) in water at 25 °C. Scheme 1. Dissociation of benzoic acids
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then acetonitrile. Consider the following acid dissociation equilibrium: HA ⇌ A − + H + Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile.