Search results
Results From The WOW.Com Content Network
Oxygen saturation is the fraction of oxygen-saturated haemoglobin relative to total haemoglobin (unsaturated + saturated) in the blood. The human body requires and regulates a very precise and specific balance of oxygen in the blood. Normal arterial blood oxygen saturation levels in humans are 96–100 percent. [1]
You are free: to share – to copy, distribute and transmit the work; to remix – to adapt the work; Under the following conditions: attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses ...
The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis.
Dissolved oxygen levels required by various species in the Chesapeake Bay (US). In aquatic environments, oxygen saturation is a ratio of the concentration of "dissolved oxygen" (DO, O 2), to the maximum amount of oxygen that will dissolve in that water body, at the temperature and pressure which constitute stable equilibrium conditions.
A low PaO 2 indicates abnormal oxygenation of blood and a person is known as having hypoxemia. (Note that a low PaO 2 is not required for the person to have hypoxia as in cases of Ischemia, a lack of oxygen in tissues or organs as opposed to arterial blood.) At a P a O 2 of less than 60 mm Hg, supplemental oxygen should be administered.
By this method, body diagrams can be derived by pasting organs into one of the "plain" body images shown below. This method requires a graphics editor that can handle transparent images, in order to avoid white squares around the organs when pasting onto the body image. Pictures of organs are found on the project's main page. These were ...
The oxygenation index is a calculation used in intensive care medicine to measure the fraction of inspired oxygen (FiO2) and its usage within the body. A lower oxygenation index is better - this can be inferred by the equation itself. As the oxygenation of a person improves, they will be able to achieve a higher PaO2 at a lower FiO2.
The most common gas tensions measured are oxygen tension (P x O 2), carbon dioxide tension (P x CO 2) and carbon monoxide tension (P x CO). [3] The subscript x in each symbol represents the source of the gas being measured: " a " meaning arterial , " A " being alveolar , " v " being venous , and " c " being capillary . [ 3 ]