Search results
Results From The WOW.Com Content Network
The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "factoring problem". Breaking RSA encryption is known as the RSA problem. Whether it is as difficult as the factoring problem is an open question. [3] There are no published methods to defeat the system if a large enough key is used.
More specifically, the RSA problem is to efficiently compute P given an RSA public key (N, e) and a ciphertext C ≡ P e (mod N). The structure of the RSA public key requires that N be a large semiprime (i.e., a product of two large prime numbers), that 2 < e < N, that e be coprime to φ(N), and that 0 ≤ C < N.
First layer of the encryption: The ciphertext of the original readable message is hashed, and subsequently the symmetric keys are encrypted via the asymmetric key - e.g. deploying the algorithm RSA. In an intermediate step the ciphertext, and the hash digest of the ciphertext are combined into a capsule, and packed together.
RSA (Rivest–Shamir–Adleman) is a public-key cryptosystem, one of the oldest widely used for secure data transmission. The initialism "RSA" comes from the surnames of Ron Rivest , Adi Shamir and Leonard Adleman , who publicly described the algorithm in 1977.
It depends on the selected cryptographic algorithm which key—public or private—is used for encrypting messages, and which for decrypting. For example, in RSA, the private key is used for decrypting messages, while in the Digital Signature Algorithm (DSA), the private key is used for authenticating them. The public key can be sent over non ...
Public-key algorithms are most often based on the computational complexity of "hard" problems, often from number theory. For example, the hardness of RSA is related to the integer factorization problem, while Diffie–Hellman and DSA are related to the discrete logarithm problem.
In the RSA cryptosystem, Bob might tend to use a small value of d, rather than a large random number to improve the RSA decryption performance. However, Wiener's attack shows that choosing a small value for d will result in an insecure system in which an attacker can recover all secret information, i.e., break the RSA system.
In cryptography, the strong RSA assumption states that the RSA problem is intractable even when the solver is allowed to choose the public exponent e (for e ≥ 3). More specifically, given a modulus N of unknown factorization, and a ciphertext C , it is infeasible to find any pair ( M , e ) such that C ≡ M e mod N .