When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Random variable - Wikipedia

    en.wikipedia.org/wiki/Random_variable

    A mixed random variable is a random variable whose cumulative distribution function is neither discrete nor everywhere-continuous. [10] It can be realized as a mixture of a discrete random variable and a continuous random variable; in which case the CDF will be the weighted average of the CDFs of the component variables. [10]

  3. Continuous or discrete variable - Wikipedia

    en.wikipedia.org/.../Continuous_or_discrete_variable

    In probability theory and statistics, the probability distribution of a mixed random variable consists of both discrete and continuous components. A mixed random variable does not have a cumulative distribution function that is discrete or everywhere-continuous. An example of a mixed type random variable is the probability of wait time in a queue.

  4. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    This does not look random, but it satisfies the definition of random variable. This is useful because it puts deterministic variables and random variables in the same formalism. The discrete uniform distribution, where all elements of a finite set are equally likely. This is the theoretical distribution model for a balanced coin, an unbiased ...

  5. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    This random variable X has a Bernoulli distribution with parameter . [29] This is a transformation of discrete random variable. For a distribution function of an absolutely continuous random variable, an absolutely continuous random variable must be constructed.

  6. Law of the unconscious statistician - Wikipedia

    en.wikipedia.org/wiki/Law_of_the_unconscious...

    A number of special cases are given here. In the simplest case, where the random variable X takes on countably many values (so that its distribution is discrete), the proof is particularly simple, and holds without modification if X is a discrete random vector or even a discrete random element.

  7. Probability-generating function - Wikipedia

    en.wikipedia.org/wiki/Probability-generating...

    If X is a discrete random variable taking values x in the non-negative integers {0,1, ...}, then the probability generating function of X is defined as [1] = ⁡ = = (),where is the probability mass function of .

  8. Bernoulli distribution - Wikipedia

    en.wikipedia.org/wiki/Bernoulli_distribution

    In probability theory and statistics, the Bernoulli distribution, named after Swiss mathematician Jacob Bernoulli, [1] is the discrete probability distribution of a random variable which takes the value 1 with probability and the value 0 with probability =.

  9. Probability mass function - Wikipedia

    en.wikipedia.org/wiki/Probability_mass_function

    The graph of a probability mass function. All the values of this function must be non-negative and sum up to 1. In probability and statistics, a probability mass function (sometimes called probability function or frequency function [1]) is a function that gives the probability that a discrete random variable is exactly equal to some value. [2]