When.com Web Search

  1. Ads

    related to: fibonacci matrix pdf converter

Search results

  1. Results From The WOW.Com Content Network
  2. Wythoff array - Wikipedia

    en.wikipedia.org/wiki/Wythoff_array

    In mathematics, the Wythoff array is an infinite matrix of positive integers derived from the Fibonacci sequence and named after Dutch mathematician Willem Abraham Wythoff. Every positive integer occurs exactly once in the array, and every integer sequence defined by the Fibonacci recurrence can be derived by shifting a row of the array.

  3. Fibonacci polynomials - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_polynomials

    The coefficients of the Fibonacci polynomials can be read off from a left-justified Pascal's triangle following the diagonals (shown in red). The sums of the coefficients are the Fibonacci numbers. If F ( n , k ) is the coefficient of x k in F n ( x ), namely

  4. Cassini and Catalan identities - Wikipedia

    en.wikipedia.org/wiki/Cassini_and_Catalan_identities

    Cassini's identity (sometimes called Simson's identity) and Catalan's identity are mathematical identities for the Fibonacci numbers. Cassini's identity, a special case of Catalan's identity, states that for the nth Fibonacci number, + = ().

  5. Fibonacci sequence - Wikipedia

    en.wikipedia.org/wiki/Fibonacci_sequence

    A Fibonacci prime is a Fibonacci number that is prime. The first few are: [46] 2, 3, 5, 13, 89, 233, 1597, 28657, 514229, ... Fibonacci primes with thousands of digits have been found, but it is not known whether there are infinitely many. [47] F kn is divisible by F n, so, apart from F 4 = 3, any Fibonacci prime must have a prime index.

  6. Pisano period - Wikipedia

    en.wikipedia.org/wiki/Pisano_period

    For generalized Fibonacci sequences (satisfying the same recurrence relation, but with other initial values, e.g. the Lucas numbers) the number of occurrences of 0 per cycle is 0, 1, 2, or 4. The ratio of the Pisano period of n and the number of zeros modulo n in the cycle gives the rank of apparition or Fibonacci entry point of n.

  7. Linear-feedback shift register - Wikipedia

    en.wikipedia.org/wiki/Linear-feedback_shift_register

    A Fibonacci 31 bit linear feedback shift register with taps at positions 28 and 31, giving it a maximum cycle and period at this speed of nearly 6.7 years. The bit positions that affect the next state are called the taps. In the diagram the taps are [16,14,13,11]. The rightmost bit of the LFSR is called the output bit, which is always also a tap.