When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Primitive polynomial (field theory) - Wikipedia

    en.wikipedia.org/wiki/Primitive_polynomial...

    In finite field theory, a branch of mathematics, a primitive polynomial is the minimal polynomial of a primitive element of the finite field GF(p m).This means that a polynomial F(X) of degree m with coefficients in GF(p) = Z/pZ is a primitive polynomial if it is monic and has a root α in GF(p m) such that {,,,,, …} is the entire field GF(p m).

  3. Polynomial code - Wikipedia

    en.wikipedia.org/wiki/Polynomial_code

    A polynomial code is cyclic if and only if the generator polynomial divides . If the generator polynomial is primitive, then the resulting code has Hamming distance at least 3, provided that . In BCH codes, the generator polynomial is chosen to have specific roots in an extension field, in a way that achieves high Hamming distance.

  4. BCH code - Wikipedia

    en.wikipedia.org/wiki/BCH_code

    The generator polynomial of the BCH code is defined as the least common multiple g(x) = lcm(m 1 (x),…,m d − 1 (x)). It can be seen that g(x) is a polynomial with coefficients in GF(q) and divides x n − 1. Therefore, the polynomial code defined by g(x) is a cyclic code.

  5. Conway polynomial (finite fields) - Wikipedia

    en.wikipedia.org/wiki/Conway_polynomial_(finite...

    The Conway polynomial C p,n is defined as the lexicographically minimal monic primitive polynomial of degree n over F p that is compatible with C p,m for all m dividing n.This is an inductive definition on n: the base case is C p,1 (x) = x − α where α is the lexicographically minimal primitive element of F p.

  6. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Now, we can think of words as polynomials over , where the individual symbols of a word correspond to the different coefficients of the polynomial. To define a cyclic code, we pick a fixed polynomial, called generator polynomial. The codewords of this cyclic code are all the polynomials that are divisible by this generator polynomial.

  7. Finite field arithmetic - Wikipedia

    en.wikipedia.org/wiki/Finite_field_arithmetic

    A monic irreducible polynomial of degree n having coefficients in the finite field GF(q), where q = p t for some prime p and positive integer t, is called a primitive polynomial if all of its roots are primitive elements of GF(q n). [2] [3] In the polynomial representation of the finite field, this implies that x is a primitive element.

  8. Binary quadratic form - Wikipedia

    en.wikipedia.org/wiki/Binary_quadratic_form

    A form is primitive if its content is 1, that is, if its coefficients are coprime. If a form's discriminant is a fundamental discriminant , then the form is primitive. [ 1 ] Discriminants satisfy Δ ≡ 0 , 1 ( mod 4 ) . {\displaystyle \Delta \equiv 0,1{\pmod {4}}.}

  9. Primitive element (finite field) - Wikipedia

    en.wikipedia.org/wiki/Primitive_element_(finite...

    In this case, a primitive element is also called a primitive root modulo q. For example, 2 is a primitive element of the field GF(3) and GF(5), but not of GF(7) since it generates the cyclic subgroup {2, 4, 1} of order 3; however, 3 is a primitive element of GF(7). The minimal polynomial of a primitive element is a primitive polynomial.

  1. Related searches primitive polynomial codes list pdf free download bahasa indonesia kelas 5 kumer

    primitive polynomialsprimitive polynomial generator
    primitive polynomial formulawhat is a polynomial
    what is polynomial codeprimitive bch code