Search results
Results From The WOW.Com Content Network
Translational regulation refers to the control of the levels of protein synthesized from its mRNA. This regulation is vastly important to the cellular response to stressors, growth cues, and differentiation .
The strict regulation of translation in both space and time is in part governed by cis-regulatory elements located in 5′ mRNA transcript leaders (TLs) and 3′ untranslated regions (UTRs). Due to their role in translation initiation, mRNA 5′ transcript leaders (TLs) strongly influence protein expression.
Another form of translational regulation in eukaryotes comes from unique elements on the 5′ UTR called upstream open reading frames (uORF). These elements are fairly common, occurring in 35–49% of all human genes. [17] A uORF is a coding sequence located in the 5′ UTR located upstream of the coding sequences initiation site.
Regulation of gene expression, or gene regulation, [1] includes a wide range of mechanisms that are used by cells to increase or decrease the production of specific gene products (protein or RNA). Sophisticated programs of gene expression are widely observed in biology, for example to trigger developmental pathways, respond to environmental ...
Regulation of protein synthesis is partly influenced by phosphorylation of eIF2 (via the α subunit), which is a part of the eIF2-GTP-Met-tRNA i Met ternary complex (eIF2-TC). When large numbers of eIF2 are phosphorylated, protein synthesis is inhibited. This occurs under amino acid starvation or after viral infection.
In molecular biology and genetics, transcriptional regulation is the means by which a cell regulates the conversion of DNA to RNA (transcription), thereby orchestrating gene activity. A single gene can be regulated in a range of ways, from altering the number of copies of RNA that are transcribed, to the temporal control of when the gene is ...
In addition to sequences within the 3′-UTR, the physical characteristics of the region, including its length and secondary structure, contribute to translation regulation. These diverse mechanisms of gene regulation ensure that the correct genes are expressed in the correct cells at the appropriate times.
Post-translational feedback loops (PTFLs) involved in clock gene regulation have also been uncovered, often working in tandem with the TTFL model. In both mammals and plants, post-translational modifications such as phosphorylation and acetylation regulate the abundance and/or activity of clock genes and proteins.