Search results
Results From The WOW.Com Content Network
In statistics, the mode is the value that appears most often in a set of data values. [1] If X is a discrete random variable, the mode is the value x at which the probability mass function takes its maximum value (i.e., x=argmax x i P(X = x i)).
The above data can be grouped in order to construct a frequency distribution in any of several ways. One method is to use intervals as a basis. The smallest value in the above data is 8 and the largest is 34. The interval from 8 to 34 is broken up into smaller subintervals (called class intervals). For each class interval, the number of data ...
If the data is unimodal, these two will be the same. If it is possible to append an "infinite" value to the data (or any value exceeding all original data values), the last block can (and should) be omitted. A problem with including this algorithm in the text of the article is that this is "original research".
Early work on statistical classification was undertaken by Fisher, [1] [2] in the context of two-group problems, leading to Fisher's linear discriminant function as the rule for assigning a group to a new observation. [3] This early work assumed that data-values within each of the two groups had a multivariate normal distribution.
Figure 1. Probability density function of normal distributions, an example of unimodal distribution. Figure 2. A simple bimodal distribution. Figure 3. A bimodal distribution. Note that only the largest peak would correspond to a mode in the strict sense of the definition of mo
Figure 1. A simple bimodal distribution, in this case a mixture of two normal distributions with the same variance but different means. The figure shows the probability density function (p.d.f.), which is an equally-weighted average of the bell-shaped p.d.f.s of the two normal distributions.
Data binning, also called data discrete binning or data bucketing, is a data pre-processing technique used to reduce the effects of minor observation errors. The original data values which fall into a given small interval, a bin , are replaced by a value representative of that interval, often a central value ( mean or median ).
The data shown is a random sample of 10,000 points from a normal distribution with a mean of 0 and a standard deviation of 1. The data used to construct a histogram are generated via a function m i that counts the number of observations that fall into each of the disjoint categories (known as bins ).