Search results
Results From The WOW.Com Content Network
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
For a closed system, the total change in energy of a system is the sum of the work done and the heat added: = +. The reversible work done on a system by changing the volume is =, where is the pressure, and is the volume.
This article uses the physics sign convention for work, where positive work is work done by the system. Using this convention, by the first law of thermodynamics, The yellow area represents the work done = + where W is work, U is internal energy, and Q is heat. [1] Pressure-volume work by the closed system is defined as:
Properties of isolated, closed, and open thermodynamic systems in exchanging energy and matter. A thermodynamic system is a body of matter and/or radiation separate from its surroundings that can be studied using the laws of thermodynamics. Thermodynamic systems can be passive and active according to internal processes.
One of the fundamental thermodynamic equations is the description of thermodynamic work in analogy to mechanical work, or weight lifted through an elevation against gravity, as defined in 1824 by French physicist Sadi Carnot. Carnot used the phrase motive power for work.
The first law of thermodynamics is a formulation of the law of conservation of energy in the context of thermodynamic processes.The law distinguishes two principal forms of energy transfer, heat and thermodynamic work, that modify a thermodynamic system containing a constant amount of matter.
where denotes the change in the internal energy of a closed system (for which heat or work through the system boundary are possible, but matter transfer is not possible), denotes the quantity of energy supplied to the system as heat, and denotes the amount of thermodynamic work done by the system on its surroundings.
That a state of internal thermodynamic equilibrium of a body have a well defined internal energy, that is postulated by the first law of thermodynamics. The universality of the law of conservation of energy. The recognition of work as a form of energy transfer. The universal irreversibility of natural processes. The existence of adiabatic ...