Search results
Results From The WOW.Com Content Network
The 6 edge lengths - associated to the six edges of the tetrahedron. The 12 face angles - there are three of them for each of the four faces of the tetrahedron. The 6 dihedral angles - associated to the six edges of the tetrahedron, since any two faces of the tetrahedron are connected by an edge.
The tetrahedron is yet related to another two solids: By truncation the tetrahedron becomes a truncated tetrahedron. The dual of this solid is the triakis tetrahedron , a regular tetrahedron with four triangular pyramids attached to each of its faces. i.e., its kleetope .
The 5 Platonic solids are called a tetrahedron, hexahedron, octahedron, dodecahedron and icosahedron with 4, 6, 8, 12, and 20 sides respectively. The regular hexahedron is a cube . Table of polyhedra
A regular tetrahedron, an example of a solid with full tetrahedral symmetry. A regular tetrahedron has 12 rotational (or orientation-preserving) symmetries, and a symmetry order of 24 including transformations that combine a reflection and a rotation.
A pyramid with side length 5 contains 35 spheres. Each layer represents one of the first five triangular numbers. A tetrahedral number, or triangular pyramidal number, is a figurate number that represents a pyramid with a triangular base and three sides, called a tetrahedron.
The tetrahedron is self-dual, i.e. it pairs with itself. The cube and octahedron are dual to each other. The icosahedron and dodecahedron are dual to each other. The small stellated dodecahedron and great dodecahedron are dual to each other. The great stellated dodecahedron and great icosahedron are dual to each other.
The tetrahedron is self-dual (i.e. its dual is another tetrahedron). The cube and the octahedron form a dual pair. The dodecahedron and the icosahedron form a dual pair. If a polyhedron has Schläfli symbol {p, q}, then its dual has the symbol {q, p}. Indeed, every combinatorial property of one Platonic solid can be interpreted as another ...
[21] [22] A tetrahedron or triangular pyramid is an example that has four equilateral triangles, with all edges equal in length, and one of them is considered as the base. Because the faces are regular, it is an example of a Platonic solid and deltahedra , and it has tetrahedral symmetry .