Search results
Results From The WOW.Com Content Network
In the North American electrical industry, conductors thicker than 4/0 AWG are generally identified by the area in thousands of circular mils (kcmil), where 1 kcmil = 0.5067 mm 2. The next wire size thicker than 4/0 has a cross section of 250 kcmil. A circular mil is the area of a wire one mil in diameter. One million circular mils is the area ...
The variations of Q/Q (full) and V/V (full) with H/D ratio is shown in figure(b).From the equation 5, maximum value of Q/Q (full) is found to be equal to 1.08 at H/D =0.94 which implies that maximum rate of discharge through a conduit is observed for a conduit partly full.
A barn (symbol: b) is a metric unit of area equal to 10 −28 m 2 (100 fm 2).This is equivalent to a square that is 10 −14 m (10 fm) each side, or a circle of diameter approximately 1.128 × 10 −14 m (11.28 fm).
One barn is 10 −28 square metres, about the cross-sectional area of a uranium nucleus. The name probably derives from early neutron-deflection experiments, when the uranium nucleus was described, and the phrases "big as a barn" and "hit a barn door" were used. Barn are typically used for cross sections in nuclear and
The cross-sectional area of Jupiter, which is the same as the "circle" of Jupiter seen by an approaching spacecraft, is almost exactly one quarter the surface-area of the overall sphere, which in the case of Jupiter is approximately 1.535 × 10 16 m 2. 10 17 2-600 000 Mm 2: Surface area of the brown dwarf CT Chamaeleontis B. 460,000 Mm 2
Hence, given the radius, r, center, P c, a point on the circle, P 0 and a unit normal of the plane containing the circle, ^, one parametric equation of the circle starting from the point P 0 and proceeding in a positively oriented (i.e., right-handed) sense about ^ is the following:
A simple application of dimensional analysis to mathematics is in computing the form of the volume of an n-ball (the solid ball in n dimensions), or the area of its surface, the n-sphere: being an n-dimensional figure, the volume scales as x n, while the surface area, being (n − 1)-dimensional, scales as x n−1.
Poloidal direction (red arrow) and toroidal direction (blue arrow) A torus of revolution in 3-space can be parametrized as: [2] (,) = (+ ) (,) = (+ ) (,) = using angular coordinates θ, φ ∈ [0, 2π), representing rotation around the tube and rotation around the torus's axis of revolution, respectively, where the major radius R is the distance from the center of the tube to ...