Search results
Results From The WOW.Com Content Network
An integer that occurs as the discriminant of a quadratic number field is called a fundamental discriminant. [3] Cyclotomic fields: let n > 2 be an integer, let ζ n be a primitive nth root of unity, and let K n = Q(ζ n) be the nth cyclotomic field. The discriminant of K n is given by [2] [4]
In general a quadratic field of field discriminant can be obtained as a subfield of a cyclotomic field of -th roots of unity. This expresses the fact that the conductor of a quadratic field is the absolute value of its discriminant, a special case of the conductor-discriminant formula .
Geometrically, the discriminant of a quadratic form in three variables is the equation of a quadratic projective curve. The discriminant is zero if and only if the curve is decomposed in lines (possibly over an algebraically closed extension of the field). A quadratic form in four variables is the equation of a projective surface.
Simultaneously generalizing the case of imaginary quadratic fields and cyclotomic fields is the case of a CM field K, i.e. a totally imaginary quadratic extension of a totally real field. In 1974, Harold Stark conjectured that there are finitely many CM fields of class number 1. [ 12 ]
By definition, the different ideal δ K is the inverse fractional ideal I −1: it is an ideal of O K. The ideal norm of δ K is equal to the ideal of Z generated by the field discriminant D K of K. The different of an element α of K with minimal polynomial f is defined to be δ(α) = f′(α) if α generates the field K (and zero otherwise ...
The idea of the proof of the class number formula is most easily seen when K = Q(i).In this case, the ring of integers in K is the Gaussian integers.. An elementary manipulation shows that the residue of the Dedekind zeta function at s = 1 is the average of the coefficients of the Dirichlet series representation of the Dedekind zeta function.
For given low class number (such as 1, 2, and 3), Gauss gives lists of imaginary quadratic fields with the given class number and believes them to be complete. Infinitely many real quadratic fields with class number one Gauss conjectures that there are infinitely many real quadratic fields with class number one.
For the real quadratic field = (with d square-free), the fundamental unit ε is commonly normalized so that ε > 1 (as a real number). Then it is uniquely characterized as the minimal unit among those that are greater than 1. If Δ denotes the discriminant of K, then the fundamental unit is