Search results
Results From The WOW.Com Content Network
Electron-beam processing involves irradiation (treatment) of products using a high-energy electron-beam accelerator. Electron-beam accelerators utilize an on-off technology, with a common design being similar to that of a cathode ray television. Electron-beam processing is used in industry primarily for three product modifications:
Electron-beam machining is a process in which high-velocity electrons are concentrated into a narrow beam with a very high planar power density. The beam cross-section is then focused and directed toward the work piece, creating heat and vaporizing the material. Electron-beam machining can be used to accurately cut or bore a wide variety of metals.
Electron beam therapy is performed using a medical linear accelerator.The same device can also be used to produce high energy photon beams. When electrons are required, the X-ray target is retracted out of the beam and the electron beam is collimated with a piece of apparatus known as an applicator or an additional collimating insert, constructed from a low melting point alloy.
Modern 3D Lichtenberg figures or "electrical treeing" in a block of clear acrylic, created by irradiating the block with an electron beam. Actual size: 80 mm × 80 mm × 50 mm (3 in × 3 in × 2 in) Lichtenberg figures are generated by a sliding spark discharge on the flask with a mixture of gases. Structural differences between the "positive ...
Another approach is to use an electron beam to melt welding wire onto a surface to build up a part. [15] This is similar to the common 3D printing process of fused deposition modeling, but with metal, rather than plastics. With this process, an electron-beam gun provides the energy source used for melting metallic feedstock, which is typically ...
It uses a focused electron beam in a vacuum environment to create a molten pool on a metallic substrate. The surface of the substrate translates the beam while the metal wire is fed into the molten pool. The deposit solidifies immediately after the electron beam has passed, having sufficient structural strength to support itself.
Electron-beam machining (EBM) is a process where high-velocity electrons concentrated into a narrow beam that are directed towards the work piece, creating heat and vaporizing the material. EBM can be used for very precise cutting or boring of a wide variety of metals.
The Nike laser at the United States Naval Research Laboratory in Washington, DC is a 56-beam, 4–5 kJ per pulse electron beam pumped krypton fluoride excimer laser which operates in the ultraviolet at 248 nm with pulsewidths of a few nanoseconds.