Search results
Results From The WOW.Com Content Network
[3]: 354 [4] [5] Differences in behavior or biology that inhibit formation of hybrid zygotes are termed prezygotic isolation. Reinforcement can be shown to be occurring (or to have occurred in the past) by measuring the strength of prezygotic isolation in a sympatric population in comparison to an allopatric population of the same species.
[3]: 362 Coyne and Orr surveyed 171 species pairs, collecting data on their geographic mode, genetic distance, and strength of both prezygotic and postzygotic isolation; finding that prezygotic isolation was significantly stronger in sympatric pairs, correlating with the ages of the species.
The genetics of ethological isolation barriers will be discussed first. Pre-copulatory isolation occurs when the genes necessary for the sexual reproduction of one species differ from the equivalent genes of another species, such that if a male of species A and a female of species B are placed together they are unable to copulate.
A postzygotic mutation (or post-zygotic mutation) is a change in an organism's genome that is acquired during its lifespan, instead of being inherited from its parent(s) through fusion of two haploid gametes. Mutations that occur after the zygote has formed can be caused by a variety of sources that fall under two classes: spontaneous mutations ...
Reproductive isolation between a hybrid species and its parental species can arise from a variety of reproductive barriers either before or after fertilization (prezygotic or postzygotic, respectively), which may themselves be dependent or independent of environmental conditions (extrinsic or intrinsic barriers, respectively). [77]
The power of twin designs arises from the fact that twins may be either identical (monozygotic (MZ), i.e. developing from a single fertilized egg and therefore sharing all of their polymorphic alleles) or fraternal (dizygotic (DZ), i.e. developing from two fertilized eggs and therefore sharing on average 50% of their alleles, the same level of genetic similarity found in non-twin siblings).
Allochronic speciation (also known as allochronic isolation, or temporal isolation) is a form of speciation (specifically ecological speciation) arising from reproductive isolation that occurs due to a change in breeding time that reduces or eliminates gene flow between two populations of a species.
The Bateson–Dobzhansky–Muller model, [1] also known as Dobzhansky–Muller model, is a model of the evolution of genetic incompatibility, important in understanding the evolution of reproductive isolation during speciation and the role of natural selection in bringing it about.