Ad
related to: 24 cell platonic solid core
Search results
Results From The WOW.Com Content Network
Net. In four-dimensional geometry, the 24-cell is the convex regular 4-polytope [1] (four-dimensional analogue of a Platonic solid) with Schläfli symbol {3,4,3}. It is also called C 24, or the icositetrachoron, [2] octaplex (short for "octahedral complex"), icosatetrahedroid, [3] octacube, hyper-diamond or polyoctahedron, being constructed of octahedral cells.
Each convex regular 4-polytope is bounded by a set of 3-dimensional cells which are all Platonic solids of the same type and size. These are fitted together along their respective faces (face-to-face) in a regular fashion, forming the surface of the 4-polytope which is a closed, curved 3-dimensional space (analogous to the way the surface of ...
The five convex regular polyhedra are called the Platonic solids. ... (24-cell honeycomb) There are also the two improper cases {4,3,4,2} and {2,4,3,4}.
The Platonic solids have been known since antiquity. It has been suggested that certain carved stone balls created by the late Neolithic people of Scotland represent these shapes; however, these balls have rounded knobs rather than being polyhedral, the numbers of knobs frequently differed from the numbers of vertices of the Platonic solids, there is no ball whose knobs match the 20 vertices ...
A cell is the three-dimensional analogue of a face, and is therefore a polyhedron. Each face must join exactly two cells, analogous to the way in which each edge of a polyhedron joins just two faces. Like any polytope, the elements of a 4-polytope cannot be subdivided into two or more sets which are also 4-polytopes, i.e. it is not a compound.
Two dual solutions are related to the 5-cell, two dual solutions are related to the 24-cell, and an infinite set of self-dual duoprisms generate regular skew polyhedra as {4, 4 | n}. In the infinite limit these approach a duocylinder and look like a torus in their stereographic projections into 3-space.
1900: Thorold Gosset enumerated the list of nonprismatic semiregular convex polytopes with regular cells (Platonic solids) in his publication On the Regular and Semi-Regular Figures in Space of n Dimensions. In four dimensions, this gives the rectified 5-cell, the rectified 600-cell, and the snub 24-cell. [2]
The vertices of a snub 24-cell centered at the origin of 4-space, with edges of length 2, are obtained by taking even permutations of (0, ±1, ±φ, ±φ 2). where φ = 1+ √ 5 / 2 ≈ 1.618 is the golden ratio.