When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cohen–Sutherland algorithm - Wikipedia

    en.wikipedia.org/wiki/Cohen–Sutherland_algorithm

    The intersection of the outpoint and extended viewport border is then calculated (i.e. with the parametric equation for the line), and this new point replaces the outpoint. The algorithm repeats until a trivial accept or reject occurs. The numbers in the figure below are called outcodes. An outcode is computed for each of the two points in the ...

  3. Line–line intersection - Wikipedia

    en.wikipedia.org/wiki/Lineline_intersection

    The intersection point falls within the first line segment if 0 ≤ t ≤ 1, and it falls within the second line segment if 0 ≤ u ≤ 1. These inequalities can be tested without the need for division, allowing rapid determination of the existence of any line segment intersection before calculating its exact point. [3]

  4. Distance from a point to a line - Wikipedia

    en.wikipedia.org/.../Distance_from_a_point_to_a_line

    The line with equation ax + by + c = 0 has slope -a/b, so any line perpendicular to it will have slope b/a (the negative reciprocal). Let (m, n) be the point of intersection of the line ax + by + c = 0 and the line perpendicular to it which passes through the point (x 0, y 0). The line through these two points is perpendicular to the original ...

  5. Multiple line segment intersection - Wikipedia

    en.wikipedia.org/wiki/Multiple_line_segment...

    The Shamos–Hoey algorithm [1] applies this principle to solve the line segment intersection detection problem, as stated above, of determining whether or not a set of line segments has an intersection; the Bentley–Ottmann algorithm works by the same principle to list all intersections in logarithmic time per intersection.

  6. Line clipping - Wikipedia

    en.wikipedia.org/wiki/Line_clipping

    It can be used for line or line-segment clipping against a rectangular window, as well as against a convex polygon. The algorithm is based on classifying a vertex of the clipping window against a half-space given by a line p: ax + by + c = 0. The result of the classification determines the edges intersected by the line p. The algorithm is ...

  7. Euclidean distance - Wikipedia

    en.wikipedia.org/wiki/Euclidean_distance

    In mathematics, the Euclidean distance between two points in Euclidean space is the length of the line segment between them. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, and therefore is occasionally called the Pythagorean distance.

  8. Map segmentation - Wikipedia

    en.wikipedia.org/wiki/Map_segmentation

    In mathematics, the map segmentation problem is a kind of optimization problem. It involves a certain geographic region that has to be partitioned into smaller sub-regions in order to achieve a certain goal. Typical optimization objectives include: [1] Minimizing the workload of a fleet of vehicles assigned to the sub-regions;

  9. Bresenham's line algorithm - Wikipedia

    en.wikipedia.org/wiki/Bresenham's_line_algorithm

    (0,0) is at the top left corner of the grid, (1,1) is at the top left end of the line and (11, 5) is at the bottom right end of the line. The following conventions will be applied: the top-left is (0,0) such that pixel coordinates increase in the right and down directions (e.g. that the pixel at (7,4) is directly above the pixel at (7,5)), and