When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    Let A be an m × n matrix. Let the column rank of A be r, and let c 1, ..., c r be any basis for the column space of A. Place these as the columns of an m × r matrix C. Every column of A can be expressed as a linear combination of the r columns in C. This means that there is an r × n matrix R such that A = CR.

  3. Identity matrix - Wikipedia

    en.wikipedia.org/wiki/Identity_matrix

    In linear algebra, the identity matrix of size is the square matrix with ones on the main diagonal and zeros elsewhere. It has unique properties, for example when the identity matrix represents a geometric transformation, the object remains unchanged by the transformation. In other contexts, it is analogous to multiplying by the number 1.

  4. Woodbury matrix identity - Wikipedia

    en.wikipedia.org/wiki/Woodbury_matrix_identity

    In mathematics, specifically linear algebra, the Woodbury matrix identity – named after Max A. Woodbury [1] [2] – says that the inverse of a rank-k correction of some matrix can be computed by doing a rank-k correction to the inverse of the original matrix.

  5. Determinant - Wikipedia

    en.wikipedia.org/wiki/Determinant

    For the case of column vector c and row vector r, each with m components, the formula allows quick calculation of the determinant of a matrix that differs from the identity matrix by a matrix of rank 1: (+) = +. More generally, [14] for any invertible m × m matrix X,

  6. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: m-by-n matrix A of rank r Decomposition: A = C F {\displaystyle A=CF} where C is an m -by- r full column rank matrix and F is an r -by- n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x ...

  7. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    In linear algebra, the singular value decomposition (SVD) is a factorization of a real or complex matrix into a rotation, followed by a rescaling followed by another rotation. It generalizes the eigendecomposition of a square normal matrix with an orthonormal eigenbasis to any ⁠ m × n {\displaystyle m\times n} ⁠ matrix.

  8. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    Likewise, the Gram matrix of the rows or columns of a unitary matrix is the identity matrix. The rank of the Gram matrix of vectors in R k {\displaystyle \mathbb {R} ^{k}} or C k {\displaystyle \mathbb {C} ^{k}} equals the dimension of the space spanned by these vectors.

  9. Jacobian matrix and determinant - Wikipedia

    en.wikipedia.org/wiki/Jacobian_matrix_and...

    Composable differentiable functions f : R n → R m and g : R m → R k satisfy the chain rule, namely () = (()) for x in R n. The Jacobian of the gradient of a scalar function of several variables has a special name: the Hessian matrix , which in a sense is the " second derivative " of the function in question.