Ad
related to: statistics variable
Search results
Results From The WOW.Com Content Network
A random variable (also called random quantity, aleatory variable, or stochastic variable) is a mathematical formalization of a quantity or object which depends on random events. [1] The term 'random variable' in its mathematical definition refers to neither randomness nor variability [ 2 ] but instead is a mathematical function in which
With multiple independent variables, the model is y i = a + bx i,1 + bx i,2 + ... + bx i,n + e i, where n is the number of independent variables. [citation needed] In statistics, more specifically in linear regression, a scatter plot of data is generated with X as the independent variable and Y as the dependent variable.
The data type is a fundamental concept in statistics and controls what sorts of probability distributions can logically be used to describe the variable, the permissible operations on the variable, the type of regression analysis used to predict the variable, etc. The concept of data type is similar to the concept of level of measurement, but ...
Random variables are usually written in upper case Roman letters, such as or and so on. Random variables, in this context, usually refer to something in words, such as "the height of a subject" for a continuous variable, or "the number of cars in the school car park" for a discrete variable, or "the colour of the next bicycle" for a categorical variable.
Statistical analysis of a data set often reveals that two variables (properties) of the population under consideration tend to vary together, as if they were connected. For example, a study of annual income that also looks at age of death, might find that poor people tend to have shorter lives than affluent people.
The standard deviation of a random variable, sample, statistical population, data set, or probability distribution is the square root of its variance. (For a finite population, variance is the average of the squared deviations from the mean.) A useful property of the standard deviation is that, unlike the variance, it is expressed in the same ...
In data processing data are often represented by a combination of items (objects organized in rows), and multiple variables (organized in columns). Values of each variable statistically "vary" (or are distributed) across the variable's domain. A domain is a set of all possible values that a variable is allowed to have.
In mathematics and statistics, a quantitative variable may be continuous or discrete if it is typically obtained by measuring or counting, respectively. [1] If it can take on two particular real values such that it can also take on all real values between them (including values that are arbitrarily or infinitesimally close together), the variable is continuous in that interval. [2]