Search results
Results From The WOW.Com Content Network
A "statistically significant" difference between two proportions is understood to mean that, given the data, it is likely that there is a difference in the population proportions. However, this difference might be too small to be meaningful—the statistically significant result does not tell us the size of the difference.
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
While significance is founded on the omnibus test, it doesn't specify exactly where the difference is occurred, meaning, it doesn't bring specification on which parameter is significantly different from the other, but it statistically determines that there is a difference, so at least two of the tested parameters are statistically different. If ...
For the null hypothesis to be rejected, an observed result has to be statistically significant, i.e. the observed p-value is less than the pre-specified significance level . To determine whether a result is statistically significant, a researcher calculates a p -value, which is the probability of observing an effect of the same magnitude or ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
[2] In the social sciences, a result may be considered statistically significant if its confidence level is of the order of a two-sigma effect (95%), while in particle physics and astrophysics, there is a convention of requiring statistical significance of a five-sigma effect (99.99994% confidence) to qualify as a discovery. [3]
The observed data are statistically compared against the equivalence bounds. If the statistical test indicates the observed data is surprising, assuming that true effects are at least as extreme as the equivalence bounds, a Neyman-Pearson approach to statistical inferences can be used to reject effect sizes larger than the equivalence bounds ...
It complements hypothesis testing approaches such as null hypothesis significance testing (NHST), by going beyond the question is an effect present or not, and provides information about how large an effect is. [2] [3] Estimation statistics is sometimes referred to as the new statistics. [3] [4] [5]