Search results
Results From The WOW.Com Content Network
Multi-key quicksort, also known as three-way radix quicksort, [1] is an algorithm for sorting strings.This hybrid of quicksort and radix sort was originally suggested by P. Shackleton, as reported in one of C.A.R. Hoare's seminal papers on quicksort; [2]: 14 its modern incarnation was developed by Jon Bentley and Robert Sedgewick in the mid-1990s. [3]
This is done by merging runs until certain criteria are fulfilled. Timsort has been Python's standard sorting algorithm since version 2.3 (since version 3.11 using the Powersort merge policy [5]), and is used to sort arrays of non-primitive type in Java SE 7, [6] on the Android platform, [7] in GNU Octave, [8] on V8, [9] and Swift. [10]
In the card example, cards are represented as a record (rank, suit), and the key is the rank. A sorting algorithm is stable if whenever there are two records R and S with the same key, and R appears before S in the original list, then R will always appear before S in the sorted list.
Example: The following table shows the steps for sorting the sequence {3, 7, 4, 9, 5, 2, 6, 1}. In each step, the key under consideration is underlined. The key that was moved (or left in place because it was the biggest yet considered) in the previous step is marked with an asterisk.
Bitonic mergesort is a parallel algorithm for sorting. It is also used as a construction method for building a sorting network.The algorithm was devised by Ken Batcher.The resulting sorting networks consist of ( ()) comparators and have a delay of ( ()), where is the number of items to be sorted. [1]
Counting sort is not a comparison sort; it uses key values as indexes into an array and the Ω(n log n) lower bound for comparison sorting will not apply. [1] Bucket sort may be used in lieu of counting sort, and entails a similar time analysis. However, compared to counting sort, bucket sort requires linked lists, dynamic arrays, or a large ...
The difference between pigeonhole sort and counting sort is that in counting sort, the auxiliary array does not contain lists of input elements, only counts: 3: 1; 4: 0; 5: 2; 6: 0; 7: 0; 8: 1; For arrays where N is much larger than n, bucket sort is a generalization that is more efficient in space and time.
Conceptually, the merge sort algorithm consists of two steps: Recursively divide the list into sublists of (roughly) equal length, until each sublist contains only one element, or in the case of iterative (bottom up) merge sort, consider a list of n elements as n sub-lists of size 1. A list containing a single element is, by definition, sorted.