Search results
Results From The WOW.Com Content Network
The wire is fed through a guiding tube. Before starting the actual winding process, the wire is mounted to a post or a clamping device of the coil body or winding device. By the linear laying movement of the wire guiding tube, the component to be wound is turned in a way that the wire is distributed throughout the winding space of the coil body.
Series RL, parallel C circuit with resistance in series with the inductor is the standard model for a self-resonant inductor. A series resistor with the inductor in a parallel LC circuit as shown in Figure 4 is a topology commonly encountered where there is a need to take into account the resistance of the coil winding and its self-capacitance.
In contrast to the parallel shunt component, the series component in the circuit diagram represents the winding losses due to the resistance of the coil windings of the transformer. Current, voltage and power are measured at the primary winding to ascertain the admittance and power-factor angle.
In a "lap" winding, there are as many current paths between the brush (or line) connections as there are poles in the field winding. In a "wave" winding, there are only two paths, and there are as many coils in series as half the number of poles. So, for a given rating of machine, a wave winding is more suitable for large currents and low voltages.
On the inside, the configuration of the wire windings makes it different. The stator portion of the resolver houses three windings: an exciter winding and two two-phase windings (usually labeled "x" and "y") (case of a brushless resolver). The exciter winding is located on the top; it is a coil of a turning (rotary) transformer.
[1] [2] In the case of two windings wound around the same core in parallel, for example, the polarity will be the same on the same ends: A sudden (instantaneous) current in the first coil will induce a voltage opposing the sudden increase in the first and also in the second coil, because the magnetic field produced by the current in the first ...
Basket winding (or basket-weave winding or honeycomb winding or scatter winding) is a winding method for electrical wire in a coil. The winding pattern is used for radio-frequency electronic components with many parallel wires, such as inductors and transformers. The winding pattern reduces the amount of wire running in adjacent, parallel turns.
Magnetic field (green) induced by a current-carrying wire winding (red) in a magnetic circuit consisting of an iron core C forming a closed loop with two air gaps G in it. In an analogy to an electric circuit, the winding acts analogously to an electric battery, providing the magnetizing field , the core pieces act like wires, and the gaps G act like resistors.