Ad
related to: unlike data databases warehouses is a good source of research design
Search results
Results From The WOW.Com Content Network
Data Warehouse and Data mart overview, with Data Marts shown in the top right. In computing, a data warehouse (DW or DWH), also known as an enterprise data warehouse (EDW), is a system used for reporting and data analysis and is a core component of business intelligence. [1] Data warehouses are central repositories of data integrated from ...
Data architecture should be defined in the planning phase of the design of a new data processing and storage system. The major types and sources of data necessary to support an enterprise should be identified in a manner that is complete, consistent, and understandable.
Data Warehouse and Data Mart overview, with Data Marts shown in the top right.. A data mart is a structure/access pattern specific to data warehouse environments. The data mart is a subset of the data warehouse that focuses on a specific business line, department, subject area, or team. [1]
Data integration refers to the process of combining, sharing, or synchronizing data from multiple sources to provide users with a unified view. [1] There are a wide range of possible applications for data integration, from commercial (such as when a business merges multiple databases) to scientific (combining research data from different bioinformatics repositories).
The process of dimensional modeling builds on a 4-step design method that helps to ensure the usability of the dimensional model and the use of the data warehouse. The basics in the design build on the actual business process which the data warehouse should cover. Therefore, the first step in the model is to describe the business process which ...
Data-parallelism applied computation independently to each data item of a set of data, which allows the degree of parallelism to be scaled with the volume of data. The most important reason for developing data-parallel applications is the potential for scalable performance, and may result in several orders of magnitude performance improvement.
Other data warehouses (or even other parts of the same data warehouse) may add new data in a historical form at regular intervals – for example, hourly. To understand this, consider a data warehouse that is required to maintain sales records of the last year. This data warehouse overwrites any data older than a year with newer data.
Data blending is a process whereby big data from multiple sources [1] are merged into a single data warehouse or data set. [ 2 ] Data blending allows business analysts to cope with the expansion of data that they need to make critical business decisions based on good quality business intelligence . [ 3 ]