Ad
related to: chi square calculation example problems in real life
Search results
Results From The WOW.Com Content Network
Because the square of a standard normal distribution is the chi-squared distribution with one degree of freedom, the probability of a result such as 1 heads in 10 trials can be approximated either by using the normal distribution directly, or the chi-squared distribution for the normalised, squared difference between observed and expected value.
A chi-squared test (also chi-square or χ 2 test) is a statistical hypothesis test used in the analysis of contingency tables when the sample sizes are large. In simpler terms, this test is primarily used to examine whether two categorical variables ( two dimensions of the contingency table ) are independent in influencing the test statistic ...
In statistics, minimum chi-square estimation is a method of estimation of unobserved quantities based on observed data. [1]In certain chi-square tests, one rejects a null hypothesis about a population distribution if a specified test statistic is too large, when that statistic would have approximately a chi-square distribution if the null hypothesis is true.
The chi-squared statistic can then be used to calculate a p-value by comparing the value of the statistic to a chi-squared distribution. The number of degrees of freedom is equal to the number of cells , minus the reduction in degrees of freedom, . The chi-squared statistic can be also calculated as
In probability theory and statistics, the chi distribution is a continuous probability distribution over the non-negative real line. It is the distribution of the positive square root of a sum of squared independent Gaussian random variables .
The change of variable formula (implicitly derived above), for a monotonic transformation = (), is: = (()) | |.In this case the change is not monotonic, because every value of has two corresponding values of (one positive and negative).
This reduces the chi-squared value obtained and thus increases its p-value. The effect of Yates's correction is to prevent overestimation of statistical significance for small data. This formula is chiefly used when at least one cell of the table has an expected count smaller than 5. = =
Using the poisson-weighted mixture representation for , and the fact that the sum of chi-squared random variables is also a chi-square, completes the result. The indices in the series are (1 + 2 i ) + ( k − 1) = k + 2 i as required.