Ad
related to: s matrix theory in qft memory loss
Search results
Results From The WOW.Com Content Network
In physics, the S-matrix or scattering matrix is a matrix that relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics , scattering theory and quantum field theory (QFT).
But in the guise of string theory, S-matrix theory is still a popular approach to the problem of quantum gravity. The S-matrix theory is related to the holographic principle and the AdS/CFT correspondence by a flat space limit. The analog of the S-matrix relations in AdS space is the boundary conformal theory. [1] The most lasting legacy of the ...
The S-matrix describes the amplitude for a process with an initial state evolving into a final state .If the initial and final states consist of two clusters, with and close to each other but far from the pair and , then the cluster decomposition property requires the S-matrix to factorize
In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.
Quantum Field Theory A Modern Perspective. Springer. There are some review article about applications of the Schwinger–Dyson equations with applications to special field of physics. For applications to Quantum Chromodynamics there are R. Alkofer and L. v.Smekal (2001). "On the infrared behaviour of QCD Green's functions". Phys. Rep. 353 (5 ...
The S-matrix in quantum field theory is an example of a time-ordered product. The S-matrix, transforming the state at t = −∞ to a state at t = +∞, can also be thought of as a kind of "holonomy", analogous to the Wilson loop. We obtain a time-ordered expression because of the following reason: We start with this simple formula for the ...
In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform.The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary ...
Unlike Zeh's publications, Zurek's articles were fairly agnostic about interpretation, focusing instead on specific problems of density-matrix dynamics. Zurek's interest in decoherence stemmed from furthering Bohr's analysis of the double-slit experiment in his reply to the Einstein–Podolsky–Rosen paradox, work he had undertaken with Bill ...