Search results
Results From The WOW.Com Content Network
This page contains tables of azeotrope data for various binary and ternary mixtures of solvents. The data include the composition of a mixture by weight (in binary azeotropes, when only one fraction is given, it is the fraction of the second component), the boiling point (b.p.) of a component, the boiling point of a mixture, and the specific gravity of the mixture.
A well-known example of a positive azeotrope is an ethanol–water mixture (obtained by fermentation of sugars) consisting of 95.63% ethanol and 4.37% water (by mass), which boils at 78.2 °C. [10] Ethanol boils at 78.4 °C, water boils at 100 °C, but the azeotrope boils at 78.2 °C, which is lower than either of its constituents. [11]
The addition of a material separation agent, such as benzene to an ethanol/water mixture, changes the molecular interactions and eliminates the azeotrope. Added in the liquid phase, the new component can alter the activity coefficient of various compounds in different ways thus altering a mixture's relative volatility.
In industry the butanol-water mixture is separated with this technique. At the previous case the binary system forms already a heterogeneous azeotrope. The other application of the heteroazeotropic distillation is the separation of a binary system (A-B) forming a homogeneous azeotrope.
In the table above, it can be seen that water is the most polar-solvent, followed by DMSO, and then acetonitrile. Consider the following acid dissociation equilibrium: HA ⇌ A − + H + Water, being the most polar-solvent listed above, stabilizes the ionized species to a greater extent than does DMSO or Acetonitrile.
Excess volume of the mixture of ethanol and water (volume contraction) Heat of mixing of the mixture of ethanol and water Vapor–liquid equilibrium of the mixture of ethanol and water (including azeotrope) Solid–liquid equilibrium of the mixture of ethanol and water (including eutecticum) Miscibility gap in the mixture of dodecane and ethanol
Relative volatility is a measure comparing the vapor pressures of the components in a liquid mixture of chemicals. This quantity is widely used in designing large industrial distillation processes.
Vapor-liquid Equilibrium for Benzene/Acetone [5] P = 101.325 kPa BP Temp. °C % by mole benzene liquid vapor ... Water solubility: negligible Specific gravity: 0.87