Ad
related to: model based fault detection
Search results
Results From The WOW.Com Content Network
The system model may be mathematical or knowledge based. Some of the model-based FDI techniques include [2] observer-based approach, parity-space approach, and parameter identification based methods. There is another trend of model-based FDI schemes, which is called set-membership methods. These methods guarantee the detection of fault under ...
Model-based voltage and current systems (MBVI systems): This is a technique that makes use of the information available from the current and voltage signals across all three phases simultaneously. Model-based systems are able to identify many of the same phenomena also seen by more conventional techniques, covering electrical, mechanical, and ...
A fault model, falls under one of the following assumptions: single fault assumption: only one fault occur in a circuit. if we define k possible fault types in our fault model the circuit has n signal lines, by single fault assumption, the total number of single faults is k×n. multiple fault assumption: multiple faults may occur in a circuit.
In the nominal, i.e. fault-free situation, the lower control loop operates to meet the control goals. The fault-detection (FDI) module monitors the closed-loop system to detect and isolate faults. The fault estimate is passed to the reconfiguration block, which modifies the control loop to reach the control goals in spite of the fault.
A fault tree diagram. Fault tree analysis (FTA) is a type of failure analysis in which an undesired state of a system is examined. This analysis method is mainly used in safety engineering and reliability engineering to understand how systems can fail, to identify the best ways to reduce risk and to determine (or get a feeling for) event rates of a safety accident or a particular system level ...
This process of "model based" condition monitoring was originally designed and used on NASA's space shuttle to monitor and detect developing faults in the space shuttle's main engine. [12] It allows for the automation of data collection and analysis tasks, providing round the clock condition monitoring and warnings about faults as they develop.
The single stuck-at fault model is structural because it is defined based on a structural gate-level circuit model. A pattern set with 100% stuck-at fault coverage consists of tests to detect every possible stuck-at fault in a circuit. 100% stuck-at fault coverage does not necessarily guarantee high quality, since faults of many other kinds ...
The science of prognostics is based on the analysis of failure modes, detection of early signs of wear and aging, and fault conditions. An effective prognostics solution is implemented when there is sound knowledge of the failure mechanisms that are likely to cause the degradations leading to eventual failures in the system.