When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A body's motion preserves the status quo, but external forces can perturb this. The modern understanding of Newton's first law is that no inertial observer is privileged over any other. The concept of an inertial observer makes quantitative the everyday idea of feeling no effects of motion.

  3. Dynamics (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Dynamics_(mechanics)

    The dynamics of a rigid body system is described by the laws of kinematics and by the application of Newton's second law or their derivative form, Lagrangian mechanics. The solution of these equations of motion provides a description of the position, the motion and the acceleration of the individual components of the system, and overall the ...

  4. Action (physics) - Wikipedia

    en.wikipedia.org/wiki/Action_(physics)

    The action corresponding to the various paths is used to calculate the path integral, which gives the probability amplitudes of the various outcomes. Although equivalent in classical mechanics with Newton's laws, the action principle is better suited for generalizations and plays an important role in modern physics. Indeed, this principle is ...

  5. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    A body at rest will remain at rest, and a body in motion will remain in motion unless it is acted upon by an external force. (This is known as the law of inertia .) Force ( F → {\displaystyle {\vec {F}}} ) is equal to the change in momentum per change in time ( Δ m v → Δ t {\displaystyle {\frac {\Delta m{\vec {v}}}{\Delta t}}} ).

  6. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move.

  7. Action principles - Wikipedia

    en.wikipedia.org/wiki/Action_principles

    Action principles can be directly applied to many problems in classical mechanics, e.g. the shape of elastic rods under load, [23]: 9 the shape of a liquid between two vertical plates (a capillary), [23]: 22 or the motion of a pendulum when its support is in motion.

  8. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  9. Force - Wikipedia

    en.wikipedia.org/wiki/Force

    Newton's Third Law of Motion requires that all objects exerting torques themselves experience equal and opposite torques, [50] and therefore also directly implies the conservation of angular momentum for closed systems that experience rotations and revolutions through the action of internal torques.