Search results
Results From The WOW.Com Content Network
The phenomenon, when taken to mean "hot water freezes faster than cold", is difficult to reproduce or confirm because it is ill-defined. [4] Monwhea Jeng proposed a more precise wording: "There exists a set of initial parameters, and a pair of temperatures, such that given two bodies of water identical in these parameters, and differing only in initial uniform temperatures, the hot one will ...
For this, they forced E. coli planktonic cells into a swarming-cell-phenotype by inhibiting cell division (leading to cell elongation) and by deletion of the chemosensory system (leading to smooth swimming cells that do not tumble). The increase of bacterial density inside the channel led to the formation of progressively larger rafts. Cells ...
Water can enter the cell by diffusion through the cell membrane or through selective membrane channels called aquaporins, which greatly facilitate the flow of water. [1] It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity ...
Generally, turgor pressure is caused by the osmotic flow of water and occurs in plants, fungi, and bacteria. The phenomenon is also observed in protists that have cell walls. [3] This system is not seen in animal cells, as the absence of a cell wall would cause the cell to lyse when under too much pressure. [4]
When the rains return and soils become wet, the osmotic gradient between the bacterial cells and the soil water causes the cells to gain water quickly. Under these conditions, many bacterial cells burst, releasing a pulse of nutrients. [64] Decomposition rates also tend to be slower in acidic soils. [64]
Cold water does not boil faster. Water boils when it reaches its boiling point of 212 degrees Fahrenheit, 100 degrees Celsius or 373 degrees Kelvin. ... Cold water does not boil faster. Water ...
In this response, bacterial cells can secrete extracellular polymeric substances to form a film that can provide support to the bacterial colony, such as by improving their ability to adhere to a surface. [4] Another common stress response is latency. In a latent states, a cell will slow down its metabolism and become virtually dormant.
At least six major areas of cryobiology can be identified: 1) study of cold-adaptation of microorganisms, plants (cold hardiness), and animals, both invertebrates and vertebrates (including hibernation), 2) cryopreservation of cells, tissues, gametes, and embryos of animal and human origin for (medical) purposes of long-term storage by cooling to temperatures below the freezing point of water.