Search results
Results From The WOW.Com Content Network
Edzard Ernst has called the promotion of sodium bicarbonate as a cancer cure "one of the more sickening alternative cancer scams I have seen for a long time". [ 48 ] Sodium bicarbonate can be added to local anaesthetics , to speed up the onset of their effects and make their injection less painful. [ 49 ]
In aerodynamics, aerodynamic drag, also known as air resistance, is the fluid drag force that acts on any moving solid body in the direction of the air's freestream flow. [ 22 ] From the body's perspective (near-field approach), the drag results from forces due to pressure distributions over the body surface, symbolized D p r {\displaystyle D ...
Drag coefficients in fluids with Reynolds number approximately 10 4 [1] [2] Shapes are depicted with the same projected frontal area. In fluid dynamics, the drag coefficient (commonly denoted as: , or ) is a dimensionless quantity that is used to quantify the drag or resistance of an object in a fluid environment, such as air or water.
Generally, in Earth's atmosphere, all results below will therefore be quite inaccurate after only 5 seconds of fall (at which time an object's velocity will be a little less than the vacuum value of 49 m/s (9.8 m/s 2 × 5 s) due to air resistance). Air resistance induces a drag force on any body that falls through any atmosphere other than a ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
The exact k-ε equations contain many unknown and unmeasurable terms. For a much more practical approach, the standard k-ε turbulence model (Launder and Spalding, 1974 [3]) is used which is based on our best understanding of the relevant processes, thus minimizing unknowns and presenting a set of equations which can be applied to a large number of turbulent applications.
The movement of a fluid through porous media is described by the combination of Darcy's law with the principle of conservation of mass in order to express the capillary force or fluid velocity as a function of various other parameters including the effective pore radius, liquid viscosity or permeability. [3]
The force of friction is negative the velocity gradient of the dissipation function, = (), analogous to a force being equal to the negative position gradient of a potential. This relationship is represented in terms of the set of generalized coordinates q i = { q 1 , q 2 , … q n } {\displaystyle q_{i}=\left\{q_{1},q_{2},\ldots q_{n}\right\}} as