Ad
related to: upper bounds of functions worksheet
Search results
Results From The WOW.Com Content Network
Similarly, a function g defined on domain D and having the same codomain (K, ≤) is an upper bound of f, if g(x) ≥ f (x) for each x in D. The function g is further said to be an upper bound of a set of functions, if it is an upper bound of each function in that set.
More generally, one may define upper bound and least upper bound for any subset of a partially ordered set X, with “real number” replaced by “element of X ”. In this case, we say that X has the least-upper-bound property if every non-empty subset of X with an upper bound has a least upper bound in X.
By the boundedness theorem, f is bounded from above, hence, by the Dedekind-completeness of the real numbers, the least upper bound (supremum) M of f exists. It is necessary to find a point d in [a, b] such that M = f(d). Let n be a natural number. As M is the least upper bound, M – 1/n is not an upper bound for f.
The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.
There is a corresponding greatest-lower-bound property; an ordered set possesses the greatest-lower-bound property if and only if it also possesses the least-upper-bound property; the least-upper-bound of the set of lower bounds of a set is the greatest-lower-bound, and the greatest-lower-bound of the set of upper bounds of a set is the least ...
In mathematics the estimation lemma, also known as the ML inequality, gives an upper bound for a contour integral.If f is a complex-valued, continuous function on the contour Γ and if its absolute value | f (z) | is bounded by a constant M for all z on Γ, then
Most bounds are greater or equal to one, and are thus not sharp for a polynomial which have only roots of absolute values lower than one. However, such polynomials are very rare, as shown below. Any upper bound on the absolute values of roots provides a corresponding lower bound.
The following bounds are known for the Chebyshev functions: (in these formulas p k is the k th prime number; p 1 = 2, ... Upper bounds exist for both ...