When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Derivation of the Schwarzschild solution - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the...

    This is unfounded because that law has relativistic corrections. For example, the meaning of "r" is physical distance in that classical law, and merely a coordinate in General Relativity.] The Schwarzschild metric can also be derived using the known physics for a circular orbit and a temporarily stationary point mass. [1]

  3. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    1 Christoffel symbols, covariant derivative. 2 Curvature tensors. Toggle Curvature tensors subsection. 2.1 Definitions. 2.1.1 ... The principal symbol of the map ...

  4. Schwarzschild metric - Wikipedia

    en.wikipedia.org/wiki/Schwarzschild_metric

    The Schwarzschild solution, taken to be valid for all r > 0, is called a Schwarzschild black hole. It is a perfectly valid solution of the Einstein field equations, although (like other black holes) it has rather bizarre properties. For r < r s the Schwarzschild radial coordinate r becomes timelike and the time coordinate t becomes spacelike. [22]

  5. ∂ - Wikipedia

    en.wikipedia.org/wiki/%E2%88%82

    The symbol was introduced originally in 1770 by Nicolas de Condorcet, who used it for a partial differential, and adopted for the partial derivative by Adrien-Marie Legendre in 1786. [3] It represents a specialized cursive type of the letter d , just as the integral sign originates as a specialized type of a long s (first used in print by ...

  6. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    where the comma indicates a partial derivative with respect to the coordinates: g a b , c = ∂ g a b ∂ x c {\displaystyle g_{ab,c}={\frac {\partial {g_{ab}}}{\partial {x^{c}}}}} As the manifold has dimension n {\displaystyle n} , the geodesic equations are a system of n {\displaystyle n} ordinary differential equations for the n ...

  7. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    If the derivative does not lie on the tangent space, the right expression is the projection of the derivative over the tangent space (see covariant derivative below). Symbols of the second kind decompose the change with respect to the basis, while symbols of the first kind decompose it with respect to the dual basis.

  8. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  9. Isotropic coordinates - Wikipedia

    en.wikipedia.org/wiki/Isotropic_coordinates

    In an isotropic chart (on a static spherically symmetric spacetime), the metric (aka line element) takes the form = + (+ (+ ⁡ ())), < <, < <, < <, < < Depending on context, it may be appropriate to regard , as undetermined functions of the radial coordinate (for example, in deriving an exact static spherically symmetric solution of the Einstein field equation).