Search results
Results From The WOW.Com Content Network
A mathematical constant is a key number whose value is fixed by an unambiguous definition, often referred to by a symbol (e.g., an alphabet letter), or by mathematicians' names to facilitate using it across multiple mathematical problems. [1]
The derivative of a constant term is 0, so when a term containing a constant term is differentiated, the constant term vanishes, regardless of its value. Therefore the antiderivative is only determined up to an unknown constant term, which is called "the constant of integration" and added in symbolic form (usually denoted as ). [2]
A constant coefficient, also known as constant term or simply constant, is a quantity either implicitly attached to the zeroth power of a variable or not attached to other variables in an expression; for example, the constant coefficients of the expressions above are the number 3 and the parameter c, involved in 3=c ⋅ x 0.
[1] [2] The terms mathematical constant or physical constant are sometimes used to distinguish this meaning. [3] A function whose value remains unchanged (i.e., a constant function). [4] Such a constant is commonly represented by a variable which does not depend on the main variable(s) in question.
This enables us to pair off Ferrers diagrams contributing 1 and −1 to the x n term of the series, resulting in a net coefficient of 0 for x n. This holds for every term except when the process cannot be performed on every Ferrers diagram with n dots. There are two such cases: 1) m = s and the rightmost diagonal and bottom row meet. For example,
The square root of 2 is equal to the length of the hypotenuse of a right-angled triangle with legs of length 1. The square root of 2, often known as root 2 or Pythagoras' constant, and written as √ 2, is the unique positive real number that, when multiplied by itself, gives the number 2. It is more precisely called the principal square root ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The degree of a monomial is defined as the sum of all the exponents of the variables, including the implicit exponents of 1 for the variables which appear without exponent; e.g., in the example of the previous section, the degree is + +. The degree of is 1+1+2=4. The degree of a nonzero constant is 0.