Search results
Results From The WOW.Com Content Network
A linear system in three variables determines a collection of planes. The intersection point is the solution. In mathematics, a system of linear equations (or linear system) is a collection of two or more linear equations involving the same variables. [1] [2] For example,
The Barth surface, shown in the figure is the geometric representation of the solutions of a polynomial system reduced to a single equation of degree 6 in 3 variables. Some of its numerous singular points are visible on the image. They are the solutions of a system of 4 equations of degree 5 in 3 variables.
is a system of three equations in the three variables x, y, z. A solution to a linear system is an assignment of numbers to the variables such that all the equations are simultaneously satisfied. A solution to the system above is given by
The system + =, + = has exactly one solution: x = 1, y = 2 The nonlinear system + =, + = has the two solutions (x, y) = (1, 0) and (x, y) = (0, 1), while + + =, + + =, + + = has an infinite number of solutions because the third equation is the first equation plus twice the second one and hence contains no independent information; thus any value of z can be chosen and values of x and y can be ...
Cramer's rule, implemented in a naive way, is computationally inefficient for systems of more than two or three equations. [7] In the case of n equations in n unknowns, it requires computation of n + 1 determinants, while Gaussian elimination produces the result with the same computational complexity as the computation of a single determinant.
An indeterminate system by definition is consistent, in the sense of having at least one solution. [3] For a system of linear equations, the number of equations in an indeterminate system could be the same as the number of unknowns, less than the number of unknowns (an underdetermined system), or greater than the number of unknowns (an ...
It is inconsistent if and only if 0 = 1 is a linear combination (with polynomial coefficients) of the equations (this is Hilbert's Nullstellensatz). If an underdetermined system of t equations in n variables (t < n) has solutions, then the set of all complex solutions is an algebraic set of dimension at least n - t. If the underdetermined ...
The solution set for the equations = and + = is the single point (2, 3). An example of solving a system of linear equations is by using the elimination method: {+ = = Multiplying the terms in the second equation by 2: