When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Leslie matrix - Wikipedia

    en.wikipedia.org/wiki/Leslie_matrix

    The Leslie matrix is a discrete, age-structured model of population growth that is very popular in population ecology named after Patrick H. Leslie. [1] [2] The Leslie matrix (also called the Leslie model) is one of the most well-known ways to describe the growth of populations (and their projected age distribution), in which a population is closed to migration, growing in an unlimited ...

  3. Relative growth rate - Wikipedia

    en.wikipedia.org/wiki/Relative_growth_rate

    RGR is a concept relevant in cases where the increase in a state variable over time is proportional to the value of that state variable at the beginning of a time period. In terms of differential equations, if is the current size, and its growth rate, then relative growth rate is

  4. Exponential growth - Wikipedia

    en.wikipedia.org/wiki/Exponential_growth

    Often the independent variable is time. Described as a function, a quantity undergoing exponential growth is an exponential function of time, that is, the variable representing time is the exponent (in contrast to other types of growth, such as quadratic growth). Exponential growth is the inverse of logarithmic growth.

  5. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in physics. [8] Malthus wrote that all life forms, including humans, have a propensity to exponential population growth when resources are abundant but that actual growth is limited by available resources:

  6. Wheat and chessboard problem - Wikipedia

    en.wikipedia.org/wiki/Wheat_and_chessboard_problem

    The exercise of working through this problem may be used to explain and demonstrate exponents and the quick growth of exponential and geometric sequences. It can also be used to illustrate sigma notation. When expressed as exponents, the geometric series is: 2 0 + 2 1 + 2 2 + 2 3 + ... and so forth, up to 2 63. The base of each exponentiation ...

  7. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    Biological exponential growth is the unrestricted growth of a population of organisms, occurring when resources in its habitat are unlimited. [1] Most commonly apparent in species that reproduce quickly and asexually , like bacteria , exponential growth is intuitive from the fact that each organism can divide and produce two copies of itself.

  8. Stretched exponential function - Wikipedia

    en.wikipedia.org/wiki/Stretched_exponential_function

    In phenomenological applications, it is often not clear whether the stretched exponential function should be used to describe the differential or the integral distribution function—or neither. In each case, one gets the same asymptotic decay, but a different power law prefactor, which makes fits more ambiguous than for simple exponentials.

  9. Bateman equation - Wikipedia

    en.wikipedia.org/wiki/Bateman_equation

    In nuclear physics, the Bateman equation is a mathematical model describing abundances and activities in a decay chain as a function of time, based on the decay rates and initial abundances. The model was formulated by Ernest Rutherford in 1905 [1] and the analytical solution was provided by Harry Bateman in 1910. [2]