Search results
Results From The WOW.Com Content Network
It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite angles. The first property implies that every rhombus is a parallelogram.
An example of a quadrilateral that cannot be cyclic is a non-square rhombus. ... Proof without words using the inscribed angle theorem that opposite angles of a ...
Conversely, a convex quadrilateral in which the four angle bisectors meet at a point must be tangential and the common point is the incenter. [4] According to the Pitot theorem, the two pairs of opposite sides in a tangential quadrilateral add up to the same total length, which equals the semiperimeter s of the quadrilateral:
A convex quadrilateral is cyclic if and only if opposite angles sum to 180°. Right kite: a kite with two opposite right angles. It is a type of cyclic quadrilateral. Harmonic quadrilateral: a cyclic quadrilateral such that the products of the lengths of the opposing sides are equal.
The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure. The congruence of opposite sides and opposite angles is a direct consequence of the Euclidean parallel postulate and neither condition can be proven without appealing to the Euclidean parallel postulate or one of ...
The angle bisector theorem is concerned with the relative lengths of the two ... and A is the angle opposite ... Each diagonal of a rhombus bisects opposite angles.
The area of a bicentric quadrilateral can be expressed in terms of two opposite sides and the angle θ between the diagonals according to [9] = = . In terms of two adjacent angles and the radius r of the incircle, the area is given by [9]
The cyclic quadrilaterals may equivalently defined as the quadrilaterals in which two opposite angles are supplementary (they add to 180°); if one pair is supplementary the other is as well. [9] Therefore, the right kites are the kites with two opposite supplementary angles, for either of the two opposite pairs of angles.