When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Inverse function - Wikipedia

    en.wikipedia.org/wiki/Inverse_function

    There is a symmetry between a function and its inverse. Specifically, if f is an invertible function with domain X and codomain Y, then its inverse f −1 has domain Y and image X, and the inverse of f −1 is the original function f. In symbols, for functions f:X → Y and f −1:Y → X, [13]

  3. Inverse function theorem - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_theorem

    For functions of a single variable, the theorem states that if is a continuously differentiable function with nonzero derivative at the point ; then is injective (or bijective onto the image) in a neighborhood of , the inverse is continuously differentiable near = (), and the derivative of the inverse function at is the reciprocal of the derivative of at : ′ = ′ = ′ (()).

  4. Inverse function rule - Wikipedia

    en.wikipedia.org/wiki/Inverse_function_rule

    In calculus, the inverse function rule is a formula that expresses the derivative of the inverse of a bijective and differentiable function f in terms of the derivative of f. More precisely, if the inverse of f {\displaystyle f} is denoted as f − 1 {\displaystyle f^{-1}} , where f − 1 ( y ) = x {\displaystyle f^{-1}(y)=x} if and only if f ...

  5. Bijection, injection and surjection - Wikipedia

    en.wikipedia.org/wiki/Bijection,_injection_and...

    A function : is injective if and only if is empty or is left-invertible; that is, there is a function : such that = identity function on X. Here, f ( X ) {\displaystyle f(X)} is the image of f {\displaystyle f} .

  6. Bijection - Wikipedia

    en.wikipedia.org/wiki/Bijection

    Functions that have inverse functions are said to be invertible. A function is invertible if and only if it is a bijection. Stated in concise mathematical notation, a function f: X → Y is bijective if and only if it satisfies the condition for every y in Y there is a unique x in X with y = f(x).

  7. Horizontal line test - Wikipedia

    en.wikipedia.org/wiki/Horizontal_line_test

    The function f is injective if and only if each horizontal line intersects the graph at most once. In this case the graph is said to pass the horizontal line test. If any horizontal line intersects the graph more than once, the function fails the horizontal line test and is not injective. [2]

  8. Involution (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Involution_(mathematics)

    An involution is a function f : XX that, when applied twice, brings one back to the starting point. In mathematics, an involution, involutory function, or self-inverse function [1] is a function f that is its own inverse, f(f(x)) = x. for all x in the domain of f. [2] Equivalently, applying f twice produces the original value.

  9. Complement graph - Wikipedia

    en.wikipedia.org/wiki/Complement_graph

    Several graph-theoretic concepts are related to each other via complementation: The complement of an edgeless graph is a complete graph and vice versa. Any induced subgraph of the complement graph of a graph G is the complement of the corresponding induced subgraph in G. An independent set in a graph is a clique in the complement graph and vice ...