When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Cardinal function - Wikipedia

    en.wikipedia.org/wiki/Cardinal_function

    The most frequently used cardinal function is the function that assigns to a set A its cardinality, denoted by |A|. Aleph numbers and beth numbers can both be seen as cardinal functions defined on ordinal numbers. Cardinal arithmetic operations are examples of functions from cardinal numbers (or pairs of them) to cardinal numbers.

  3. Cardinal number - Wikipedia

    en.wikipedia.org/wiki/Cardinal_number

    A bijective function, f: X → Y, from set X to set Y demonstrates that the sets have the same cardinality, in this case equal to the cardinal number 4. Aleph-null, the smallest infinite cardinal. In mathematics, a cardinal number, or cardinal for short, is what is commonly called the number of elements of a set.

  4. Cardinality - Wikipedia

    en.wikipedia.org/wiki/Cardinality

    Bijective function from N to the set E of even numbers. Although E is a proper subset of N, both sets have the same cardinality. N does not have the same cardinality as its power set P(N): For every function f from N to P(N), the set T = {n∈N: n∉f(n)} disagrees with every set in the range of f, hence f cannot be surjective.

  5. Beth number - Wikipedia

    en.wikipedia.org/wiki/Beth_number

    the power set of the set of real numbers, so it is the number of subsets of the real line, or the number of sets of real numbers the power set of the power set of the set of natural numbers the set of all functions from R {\displaystyle \mathbb {R} } to R {\displaystyle \mathbb {R} } ( R R {\displaystyle \mathbb {R} ^{\mathbb {R} }} )

  6. Set-theoretic topology - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_topology

    Cardinal functions are widely used in topology as a tool for describing various topological properties. [4] [5] Below are some examples.(Note: some authors, arguing that "there are no finite cardinal numbers in general topology", [6] prefer to define the cardinal functions listed below so that they never take on finite cardinal numbers as values; this requires modifying some of the definitions ...

  7. Category:Cardinal numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Cardinal_numbers

    Pages in category "Cardinal numbers" The following 43 pages are in this category, out of 43 total. ... Finite set; Cardinal function; G. Gimel function; H. Hartogs ...

  8. Regular cardinal - Wikipedia

    en.wikipedia.org/wiki/Regular_cardinal

    In set theory, a regular cardinal is a cardinal number that is equal to its own cofinality. More explicitly, this means that κ {\displaystyle \kappa } is a regular cardinal if and only if every unbounded subset C ⊆ κ {\displaystyle C\subseteq \kappa } has cardinality κ {\displaystyle \kappa } .

  9. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The set N of natural numbers is defined in this system as the smallest set containing 0 and closed under the successor function S defined by S(n) = n ∪ {n}. The structure N, 0, S is a model of the Peano axioms (Goldrei 1996). The existence of the set N is equivalent to the axiom of infinity in ZF set theory.