When.com Web Search

  1. Ad

    related to: how to find interval notation of a function given

Search results

  1. Results From The WOW.Com Content Network
  2. Interval (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Interval_(mathematics)

    This characterization is used to specify intervals by mean of interval notation, which is described below. An open interval does not include any endpoint, and is indicated with parentheses. [2] For example, (,) = {< <} is the interval of all real numbers greater than 0 and less than 1.

  3. Mean of a function - Wikipedia

    en.wikipedia.org/wiki/Mean_of_a_function

    In calculus, and especially multivariable calculus, the mean of a function is loosely defined as the average value of the function over its domain. In one variable, the mean of a function f(x) over the interval (a,b) is defined by: [1] ¯ = ().

  4. Interval arithmetic - Wikipedia

    en.wikipedia.org/wiki/Interval_arithmetic

    The main objective of interval arithmetic is to provide a simple way of calculating upper and lower bounds of a function's range in one or more variables. These endpoints are not necessarily the true supremum or infimum of a range since the precise calculation of those values can be difficult or impossible; the bounds only need to contain the function's range as a subset.

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    As the number of discrete events increases, the function begins to resemble a normal distribution. Comparison of probability density functions, () for the sum of fair 6-sided dice to show their convergence to a normal distribution with increasing , in accordance to the central limit theorem. In the bottom-right graph, smoothed profiles of the ...

  6. Indicator function - Wikipedia

    en.wikipedia.org/wiki/Indicator_function

    The notation is also used to denote the characteristic function in convex analysis, which is defined as if using the reciprocal of the standard definition of the indicator function. A related concept in statistics is that of a dummy variable .

  7. Function (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Function_(mathematics)

    The functional notation requires that a name is given to the function, which, in the case of a unspecified function is often the letter f. Then, the application of the function to an argument is denoted by its name followed by its argument (or, in the case of a multivariate functions, its arguments) enclosed between parentheses, such as in

  8. Nested intervals - Wikipedia

    en.wikipedia.org/wiki/Nested_intervals

    When trying to find the square root of a number >, one can be certain that , which gives the first interval = [,], in which has to be found. If one knows the next higher perfect square >, one can get an even better candidate for the first interval: = [,].

  9. Riemann integral - Wikipedia

    en.wikipedia.org/wiki/Riemann_integral

    Each term in the sum is the product of the value of the function at a given point and the length of an interval. Consequently, each term represents the (signed) area of a rectangle with height f(t i) and width x i + 1 − x i. The Riemann sum is the (signed) area of all the rectangles. Closely related concepts are the lower and upper Darboux sums.