When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. State postulate - Wikipedia

    en.wikipedia.org/wiki/State_postulate

    The state of a simple compressible system is completely specified by two independent, intensive properties [2] A more general statement of the state postulate says: the state of a simple system is completely specified by r+1 independent, intensive properties where r is the number of significant work interactions. [1] [3]

  3. Intensive and extensive properties - Wikipedia

    en.wikipedia.org/wiki/Intensive_and_extensive...

    However the property √V is instead multiplied by √2 . The distinction between intensive and extensive properties has some theoretical uses. For example, in thermodynamics, the state of a simple compressible system is completely specified by two independent, intensive properties, along with one extensive property, such as mass.

  4. Laws of thermodynamics - Wikipedia

    en.wikipedia.org/wiki/Laws_of_thermodynamics

    [1] [2] [3] A more fundamental statement was later labelled as the zeroth law after the first three laws had been established. The zeroth law of thermodynamics defines thermal equilibrium and forms a basis for the definition of temperature: if two systems are each in thermal equilibrium with a third system, then they are in thermal equilibrium ...

  5. List of thermodynamic properties - Wikipedia

    en.wikipedia.org/wiki/List_of_thermodynamic...

    Altitude (or elevation) is usually not a thermodynamic property. Altitude can help specify the location of a system, but that does not describe the state of the system. An exception would be if the effect of gravity need to be considered in order to describe a state, in which case altitude could indeed be a thermodynamic property.

  6. Theorem of corresponding states - Wikipedia

    en.wikipedia.org/wiki/Theorem_of_corresponding...

    According to van der Waals, the theorem of corresponding states (or principle/law of corresponding states) indicates that all fluids, when compared at the same reduced temperature and reduced pressure, have approximately the same compressibility factor and all deviate from ideal gas behavior to about the same degree.

  7. images.huffingtonpost.com

    images.huffingtonpost.com/2012-08-30-3258_001.pdf

    Created Date: 8/30/2012 4:52:52 PM

  8. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.

  9. Phase rule - Wikipedia

    en.wikipedia.org/wiki/Phase_rule

    In thermodynamics, the phase rule is a general principle governing multi-component, multi-phase systems in thermodynamic equilibrium.For a system without chemical reactions, it relates the number of freely varying intensive properties (F) to the number of components (C), the number of phases (P), and number of ways of performing work on the system (N): [1] [2] [3]: 123–125