When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_space

    In geometry, a three-dimensional space (3D space, 3-space or, rarely, tri-dimensional space) is a mathematical space in which three values (coordinates) are required to determine the position of a point. Most commonly, it is the three-dimensional Euclidean space, that is, the Euclidean space of dimension three, which models physical space.

  3. Euclidean planes in three-dimensional space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_planes_in_three...

    For a plane, the two angles are called its strike (angle) and its dip (angle). A strike line is the intersection of a horizontal plane with the observed planar feature (and therefore a horizontal line), and the strike angle is the bearing of this line (that is, relative to geographic north or from magnetic north). The dip is the angle between a ...

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  5. Space (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Space_(mathematics)

    Distances and angles cannot appear in theorems of projective geometry, since these notions are neither mentioned in the axioms of projective geometry nor defined from the notions mentioned there. The question "what is the sum of the three angles of a triangle" is meaningful in Euclidean geometry but meaningless in projective geometry.

  6. Euclidean space - Wikipedia

    en.wikipedia.org/wiki/Euclidean_space

    Euclidean space is the fundamental space of geometry, intended to represent physical space. Originally, in Euclid's Elements , it was the three-dimensional space of Euclidean geometry , but in modern mathematics there are Euclidean spaces of any positive integer dimension n , which are called Euclidean n -spaces when one wants to specify their ...

  7. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition. [ 1 ] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry ), and orientation ...

  8. Hyperplane - Wikipedia

    en.wikipedia.org/wiki/Hyperplane

    In geometry, a hyperplane of an n-dimensional space V is a subspace of dimension n − 1, or equivalently, of codimension 1 in V.The space V may be a Euclidean space or more generally an affine space, or a vector space or a projective space, and the notion of hyperplane varies correspondingly since the definition of subspace differs in these settings; in all cases however, any hyperplane can ...

  9. Conformal geometry - Wikipedia

    en.wikipedia.org/wiki/Conformal_geometry

    Möbius geometry is the study of "Euclidean space with a point added at infinity", or a "Minkowski (or pseudo-Euclidean) space with a null cone added at infinity".That is, the setting is a compactification of a familiar space; the geometry is concerned with the implications of preserving angles.