Search results
Results From The WOW.Com Content Network
The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.
Predictive values can be used to estimate the post-test probability of an individual if the pre-test probability of the individual can be assumed roughly equal to the prevalence in a reference group on which both test results and knowledge on the presence or absence of the condition (for example a disease, such as may determined by "Gold ...
Positive and negative predictive values, but not sensitivity or specificity, are values influenced by the prevalence of disease in the population that is being tested. These concepts are illustrated graphically in this applet Bayesian clinical diagnostic model which show the positive and negative predictive values as a function of the ...
Predictive value of tests is the probability of a target condition given by the result of a test, [1] often in regard to medical tests.. In cases where binary classification can be applied to the test results, such yes versus no, test target (such as a substance, symptom or sign) being present versus absent, or either a positive or negative test), then each of the two outcomes has a separate ...
In fact, post-test probability, as estimated from the likelihood ratio and pre-test probability, is generally more accurate than if estimated from the positive predictive value of the test, if the tested individual has a different pre-test probability than what is the prevalence of that condition in the population.
Complementarily, the false negative rate (FNR) is the proportion of positives which yield negative test outcomes with the test, i.e., the conditional probability of a negative test result given that the condition being looked for is present. In statistical hypothesis testing, this fraction is given the letter β.
The rationale for the diagnostic odds ratio is that it is a single indicator of test performance (like accuracy and Youden's J statistic) but which is independent of prevalence (unlike accuracy) and is presented as an odds ratio, which is familiar to medical practitioners.
In science, prevalence describes a proportion (typically expressed as a percentage). For example, the prevalence of obesity among American adults in 2001 was estimated by the U. S. Centers for Disease Control (CDC) at approximately 20.9%. [5] Prevalence is a term that means being widespread and it is distinct from incidence.