Search results
Results From The WOW.Com Content Network
The integer is: 16777217 The float is: 16777216.000000 Their equality: 1 Note that 1 represents equality in the last line above. This odd behavior is caused by an implicit conversion of i_value to float when it is compared with f_value. The conversion causes loss of precision, which makes the values equal before the comparison. Important takeaways:
Information about the actual properties, such as size, of the basic arithmetic types, is provided via macro constants in two headers: <limits.h> header (climits header in C++) defines macros for integer types and <float.h> header (cfloat header in C++) defines macros for floating-point types. The actual values depend on the implementation.
Consider a real number with an integer and a fraction part such as 12.375; Convert and normalize the integer part into binary; Convert the fraction part using the following technique as shown here; Add the two results and adjust them to produce a proper final conversion; Conversion of the fractional part: Consider 0.375, the fractional part of ...
bool is_negative (float x) {union {int i; float d;} my_union; my_union. d = x; return my_union. i < 0;} Accessing my_union.i after most recently writing to the other member, my_union.d , is an allowed form of type-punning in C, [ 6 ] provided that the member read is not larger than the one whose value was set (otherwise the read has unspecified ...
Double-precision floating-point format (sometimes called FP64 or float64) is a floating-point number format, usually occupying 64 bits in computer memory; it represents a wide range of numeric values by using a floating radix point. Double precision may be chosen when the range or precision of single precision would be insufficient.
Minifloats (in Survey of Floating-Point Formats) OpenEXR site; Half precision constants from D3DX; OpenGL treatment of half precision; Fast Half Float Conversions; Analog Devices variant (four-bit exponent) C source code to convert between IEEE double, single, and half precision can be found here; Java source code for half-precision floating ...
To convert a fixed-point number to floating-point, one may convert the integer to floating-point and then divide it by the scaling factor S. This conversion may entail rounding if the integer's absolute value is greater than 2 24 (for binary single-precision IEEE floating point) or of 2 53 (for double-precision).
In this example, reinterpret_cast explicitly prevents the compiler from performing a safe conversion from integer to floating-point value. [20] When the program runs it will output a garbage floating-point value. The problem could have been avoided by instead writing float fval = ival;