When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Gradient - Wikipedia

    en.wikipedia.org/wiki/Gradient

    The gradient of a function is called a gradient field. A (continuous) gradient field is always a conservative vector field: its line integral along any path depends only on the endpoints of the path, and can be evaluated by the gradient theorem (the fundamental theorem of calculus for line integrals). Conversely, a (continuous) conservative ...

  3. Gradient theorem - Wikipedia

    en.wikipedia.org/wiki/Gradient_theorem

    The gradient theorem states that if the vector field F is the gradient of some scalar-valued function (i.e., if F is conservative), then F is a path-independent vector field (i.e., the integral of F over some piecewise-differentiable curve is dependent only on end points). This theorem has a powerful converse:

  4. Vector field - Wikipedia

    en.wikipedia.org/wiki/Vector_field

    A vector field V defined on an open set S is called a gradient field or a conservative field if there exists a real-valued function (a scalar field) f on S such that = = (,,, …,). The associated flow is called the gradient flow , and is used in the method of gradient descent .

  5. Conservative vector field - Wikipedia

    en.wikipedia.org/wiki/Conservative_vector_field

    In vector calculus, a conservative vector field is a vector field that is the gradient of some function. [1] A conservative vector field has the property that its line integral is path independent; the choice of path between two points does not change the value of the line integral. Path independence of the line integral is equivalent to the ...

  6. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    More generally, for a function of n variables (, …,), also called a scalar field, the gradient is the vector field: = (, …,) = + + where (=,,...,) are mutually orthogonal unit vectors. As the name implies, the gradient is proportional to, and points in the direction of, the function's most rapid (positive) change.

  7. Gradient-like vector field - Wikipedia

    en.wikipedia.org/wiki/Gradient-like_vector_field

    Given a Morse function f on a manifold M, a gradient-like vector field X for the function f is, informally: away from critical points, X points "in the same direction as" the gradient of f, and; near a critical point (in the neighborhood of a critical point), it equals the gradient of f, when f is written in standard form given in the Morse ...

  8. Potential gradient - Wikipedia

    en.wikipedia.org/wiki/Potential_gradient

    In the case of the gravitational field g, which can be shown to be conservative, [3] it is equal to the gradient in gravitational potential Φ: =. There are opposite signs between gravitational field and potential, because the potential gradient and field are opposite in direction: as the potential increases, the gravitational field strength decreases and vice versa.

  9. Gradient (disambiguation) - Wikipedia

    en.wikipedia.org/wiki/Gradient_(disambiguation)

    Gradient in vector calculus is a vector field representing the maximum rate of increase of a scalar field or a multivariate function and the direction of this maximal rate. Gradient may also refer to: Gradient sro, a Czech aircraft manufacturer; Image gradient, a gradual change or blending of color