Search results
Results From The WOW.Com Content Network
Luhman 16 A and Luhman 16 B are the closest brown dwarf stars to Earth, and the third-nearest star system to the Solar System. [e] SSSPM J0829-1309: 61,300 Red dwarf: An L2 dwarf that is fusing hydrogen. Similarly to 2MASS J0523-1403, SSSPM J0829-1309 is one of the least luminous and massive hydrogen-fusing stars, and is smaller than Jupiter ...
The smaller star, OGLE-TR-122B, is estimated to have a radius around 0.12 solar radii, or around 20% larger than Jupiter's, and a mass of around 0.1 solar masses, or approximately 100 times Jupiter's. This makes its average density approximately 50 times the Sun's [2] [3] or over 80 times the density of water.
Parts-per-million chart of the relative mass distribution of the Solar System, each cubelet denoting 2 × 10 24 kg. This article includes a list of the most massive known objects of the Solar System and partial lists of smaller objects by observed mean radius. These lists can be sorted according to an object's radius and mass and, for the most ...
The exoplanets were found using a statistical technique called "verification by multiplicity". 95% of the discovered exoplanets were smaller than Neptune and four, including Kepler-296f, were less than 2 1/2 the size of Earth and were in habitable zones where surface temperatures are suitable for liquid water. [17] [18] [19]
Assuming that a substellar object has a composition similar to the Sun's and at least the mass of Jupiter (approximately 0.001 solar masses), its radius will be comparable to that of Jupiter (approximately 0.1 solar radii) regardless of the mass of the substellar object (brown dwarfs are less than 75 Jupiter masses).
Brown dwarfs are substellar objects that have more mass than the biggest gas giant planets, but less than the least massive main-sequence stars.Their mass is approximately 13 to 80 times that of Jupiter (M J) [2] [3] —not big enough to sustain nuclear fusion of ordinary hydrogen (1 H) into helium in their cores, but massive enough to emit some light and heat from the fusion of deuterium (2 H).
To distinguish these groups, he called them "giant" and "dwarf" stars, [1] the dwarf stars being fainter and the giants being brighter than the Sun. Most stars are currently classified under the Morgan Keenan System using the letters O, B, A, F, G, K, and M, a sequence from the hottest: type O , to the coolest: type M .
Kepler-51 is a small G-type star, with a slightly lower radius, mass and effective temperature than the Sun. It is a young star, less than one billion years old, and hence is highly active compared to the Sun. Around 4 to 6% of the star's surface is covered by starspots. Its EUV and X-ray fluxes are likely influencing the chemistry, dynamics ...