When.com Web Search

  1. Ad

    related to: 3 dimensional graphing desmos examples with answers pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    Desmos was founded by Eli Luberoff, a math and physics double major from Yale University, [3] and was launched as a startup at TechCrunch's Disrupt New York conference in 2011. [4] As of September 2012 [update] , it had received around 1 million US dollars of funding from Kapor Capital , Learn Capital, Kindler Capital, Elm Street Ventures and ...

  3. Mandelbulb - Wikipedia

    en.wikipedia.org/wiki/Mandelbulb

    For n > 3, the result is a 3-dimensional bulb-like structure with fractal surface detail and a number of "lobes" depending on n. Many of their graphic renderings use n = 8. However, the equations can be simplified into rational polynomials when n is odd. For example, in the case n = 3, the third power can be simplified into the more elegant form:

  4. Hypercube graph - Wikipedia

    en.wikipedia.org/wiki/Hypercube_graph

    In graph theory, the hypercube graph Q n is the graph formed from the vertices and edges of an n-dimensional hypercube. For instance, the cube graph Q 3 is the graph formed by the 8 vertices and 12 edges of a three-dimensional cube. Q n has 2 n vertices, 2 n – 1 n edges, and is a regular graph with n edges touching each vertex.

  5. Three-dimensional graph - Wikipedia

    en.wikipedia.org/wiki/Three-dimensional_graph

    The graph of a function of two variables, embedded into a three-dimensional space Topics referred to by the same term This disambiguation page lists mathematics articles associated with the same title.

  6. Analytic geometry - Wikipedia

    en.wikipedia.org/wiki/Analytic_geometry

    For example, in the two-dimensional case, the normal line to a curve at a given point is the line perpendicular to the tangent line to the curve at the point. In the three-dimensional case a surface normal, or simply normal, to a surface at a point P is a vector that is perpendicular to the tangent plane to that surface at P.

  7. 3-dimensional matching - Wikipedia

    en.wikipedia.org/wiki/3-dimensional_matching

    3-dimensional matchings. (a) Input T. (b)–(c) Solutions. In the mathematical discipline of graph theory, a 3-dimensional matching is a generalization of bipartite matching (also known as 2-dimensional matching) to 3-partite hypergraphs, which consist of hyperedges each of which contains 3 vertices (instead of edges containing 2 vertices in a usual graph).

  8. Cylindrical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Cylindrical_coordinate_system

    The three surfaces intersect at the point P with those coordinates (shown as a black sphere); the Cartesian coordinates of P are roughly (1.0, −1.732, 1.0). Cylindrical coordinate surfaces. The three orthogonal components, ρ (green), φ (red), and z (blue), each increasing at a constant rate. The point is at the intersection between the ...

  9. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport. Any smooth surface in three-dimensional Euclidean space is a Riemannian manifold with a Riemannian metric coming from the way it sits inside the ambient space.