Search results
Results From The WOW.Com Content Network
Prior to about 1970 the most common cause of Type 1 pitting was carbon films left in the bore by the manufacturing process. Research and manufacturing improvements in the 1960s virtually eliminated carbon as a cause of pitting with the introduction of a clause in the 1971 edition of BS 2871 requiring tube bores to be free of deleterious films ...
Endorse this file for transfer by adding |human=<your username> to this Template.; If this file is freely licensed, but otherwise unsuitable for Commons (e.g. out of Commons' scope, still copyrighted in the US), then replace this Template with {{Do not move to Commons|reason=<Why it can't be moved>}}
The long life of copper when exposed to natural waters is a result of its thermodynamic stability, its high resistance to reacting with the environment, and the formation of insoluble corrosion products that insulate the metal from the environment. The corrosion rate of copper in most drinkable waters is less than 2.5 μm/year, at this rate a ...
Pitting corrosion, or pitting, is a form of extremely localized corrosion that leads to the random creation of small holes in metal. The driving power for pitting corrosion is the depassivation of a small area, which becomes anodic (oxidation reaction) while an unknown but potentially vast area becomes cathodic (reduction reaction), leading to ...
Rhodium-plated on silver-plated copper: −0.05 Silver, solid or plated; monel metal; high nickel-copper alloys: −0.15 Nickel, solid or plated; titanium and its alloys; monel: −0.30 Copper, solid or plated; low brasses or bronzes; silver solder; German silvery high copper-nickel alloys; nickel-chromium alloys: −0.35 Brass and bronzes: −0.40
Fouling is the accumulation of unwanted material on solid surfaces. The fouling materials can consist of either living organisms (biofouling, organic) or a non-living substance (inorganic).
ASTM B577 is the Standard Test Methods for Detection of Cuprous Oxide (Hydrogen Embrittlement Susceptibility) in Copper. The test focuses on hydrogen embrittlement of copper alloys, including a metallographic evaluation (method A), testing in a hydrogen charged chamber followed by metallography (method B), and method C is the same as B but ...
Black oxide for copper, sometimes known by the trade name Ebonol C, converts the copper surface to cupric oxide. For the process to work the surface has to have at least 65% copper; for copper surfaces that have less than 90% copper it must first be pretreated with an activating treatment. The finished coating is chemically stable and very ...