Search results
Results From The WOW.Com Content Network
The propagation constant of a sinusoidal electromagnetic wave is a measure of the change undergone by the amplitude and phase of the wave as it propagates in a given direction. The quantity being measured can be the voltage , the current in a circuit , or a field vector such as electric field strength or flux density .
The propagation constant of the guided wave is complex, in general. For a lossless case, the propagation constant might be found to take on either real or imaginary values, depending on the chosen solution of the eigenvalue equation and on the angular frequency ω {\displaystyle \omega } .
In radio-frequency engineering and communications engineering, a waveguide is a hollow metal pipe used to carry radio waves. [1] This type of waveguide is used as a transmission line mostly at microwave frequencies, for such purposes as connecting microwave transmitters and receivers to their antennas, in equipment such as microwave ovens, radar sets, satellite communications, and microwave ...
The propagation constant of the waveguide mode is then computed using: =, where is the wavenumber corresponding to the core material of the waveguide, and are the wave-numbers corresponding to the standing waves in the x- and y-direction, and beta is the wavenumber in the propagation direction of the waveguide, also known as the propagation ...
When two or more modes have an identical propagation constant along the waveguide, then there is more than one modal decomposition possible in order to describe a wave with that propagation constant (for instance, a non-central Gaussian laser mode can be equivalently described as a superposition of Hermite-Gaussian modes or Laguerre-Gaussian ...
VLF propagation within the Earth–ionosphere waveguide can be described by ray theory and by wave theory. [11] [12] When distances are less than about 500 km (depending on frequency), then ray theory is appropriate. The ground wave and the first hop (or sky) wave reflected at the ionospheric D layer interfere with each other.
An electromagnetic wave propagating in the +z-direction is conventionally described by the equation: (,) = [()], where E 0 is a vector in the x-y plane, with the units of an electric field (the vector is in general a complex vector, to allow for all possible polarizations and phases);
The secondary line constants can be used, for instance, to compare the characteristics of a waveguide to a copper line, whereas the primary constants have no meaning for a waveguide. The constants are conductor resistance and inductance, and insulator capacitance and conductance, which are by convention given the symbols R, L, C, and G ...